Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(12): 124203    DOI: 10.1088/1674-1056/20/12/124203
CLASSICAL AREAS OF PHENOMENOLOGY Prev   Next  

Normal mode splitting and ground state cooling in a Fabry–Perot optical cavity and transmission line resonator

Chen Hua-Jun(陈华俊) and Mi Xian-Wu(米贤武)
College of Physics, Mechanical and Electrical Engineering, Jishou University, Jishou 416000, China
Abstract  Optomechanical dynamics in two systems which are a transmission line resonator and Fabrya-Perot optical cavity via radiation-pressure are investigated by linearized quantum Langevin equation. We work in the resolved sideband regime where the oscillator resonance frequency exceeds the cavity linewidth. Normal mode splittings of the mechanical resonator as a pure result of the coupling interaction in the two optomechanical systems is studied, and we make a comparison of normal mode splitting of mechanical resonator between the two systems. In the optical cavity, the normal mode splitting of the movable mirror approaches the latest experiment very well. In addition, an approximation scheme is introduced to demonstrate the ground state cooling, and we make a comparison of cooling between the two systems dominated by two key factors, which are the initial bath temperature and the mechanical quality factor. Since both the normal mode splitting and cooling require working in the resolved sideband regime, whether the normal mode splitting influences the cooling of the mirror is considered. Considering the size of the mechanical resonator and precooling the system, the mechanical resonator in the transmission line resonator system is easier to achieve the ground state cooling than in optical cavity.
Keywords:  optomechanical system      normal mode splitting      ground state cooling  
Received:  06 March 2011      Revised:  27 April 2011      Accepted manuscript online: 
PACS:  42.50.Lc (Quantum fluctuations, quantum noise, and quantum jumps)  
  45.80.+r (Control of mechanical systems)  
  85.85.+j (Micro- and nano-electromechanical systems (MEMS/NEMS) and devices)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 10647132 and 11104113) and the Scientific Research Fund of Hunan Provincial Education Department of China (Grant No. 10A100).

Cite this article: 

Chen Hua-Jun(陈华俊) and Mi Xian-Wu(米贤武) Normal mode splitting and ground state cooling in a Fabry–Perot optical cavity and transmission line resonator 2011 Chin. Phys. B 20 124203

[1] Markus A, Simon G, Klemens H and Nikolai K 2010 J. Opt. Soc. Am. B 27 A189
[2] Fabre C, Pinard M, Bourzeix S, Heidmann A, Giacobino E and Reynaud S 1994 Phys. Rev. A 49 1337
[3] Mancini S and Tombesi P 1994 Phys. Rev. A 49 4055
[4] Caves C M, Thorne K S, Drever R W P, Sandberg V D and Zimmermann M 1980 Rev. Mod. Phys. 52 341
[5] LaHaye M D, Buu O, Camarota B and Schwab K C 2004 % Science 304 74
[6] Ekinci K L, Yang Y T and Roukes M L 2004 J. Appl. Phys. 95 2682
[7] Caves C M 1980 Phys. Rev. Lett. 45 75
[8] Marshall W, Simon C, Penrose R and Bouwmeester D 2003 Phys. Rev. Lett. 91 130401
[9] Kippenberg T J and Vahala K J 2008 Science % 321 1172
[10] Pan C N, Li F, Fang J S and Fang M F 2010 Chin. Phys. B 20 020304
[11] Shang Y N, Yan Z H, Jia X J, Su X L and Xie C D 2010 Chin. Phys. B 20 034209
[12] Bai Y F, Zhai S Q, Gao J R and Zhang J X 2010 Chin. Phys. B 20 034207
[13] Gigan S, Böhm H R, Paternostro M, Blaser F, Langer G, Hertzberg J B, Schwab K C, Bäuerle D, Aspelmeyer M and Zeilinger A 2006 Nature (London) 444 67
[14] Kleckner D and Bouwmeester D 2006 Nature (London) 444 75
[15] Arcizet O, Cohadon P F, Briant T, Pinard M and Heidmann A 2006 Nature (London) 444 71
[16] Poggio M, Degen C L, Mamin H J and Rugar D 2007 % Phys. Rev. Lett. 99 017201
[17] Bhattacharya M and Meystre P 2007 Phys. Rev. Lett. 99 073601
[18] Xue F, Wang Y D, Liu Y X and Franco N 2007 % Phys. Rev. B 76 205302
[19] Wilson-Rae I, Nooshi N, Zwerger W and Kippenberg T J 2007 Phys. Rev. Lett. 99 093901
[20] Marquardt F, Chen J P, Clerk A A and Girvin S M 2007 Phys. Rev. Lett. 99 093902
[21] Mancini S, Vitali D and Tombesi P 1998 Phys. Rev. Lett. 80 688
[22] Thompson J D, Zwickl B M, Jayich A M, Marquardt F, Girvin S M and Harris J G E 2008 Nature (London) 452 72
[23] Wilson-Rae I, Nooshi N, Dobrindt J, Kippenberg T J and Zwerger W 2008 New J. Phys. 10 095007
[24] Corbitt T, Chen Y, Innerhofer E, Muller-Ebhardt H, Ottaway D, Rehbein H, Sigg D, Whitcomb S, Wipf C and Mavalvala N 2007 Phys. Rev. Lett. 98 150802
[25] Schliesser A, Rivi"ere R, Anetsberger G, Arcizet O and Kippenberg T J 2008 Nat. Phys. 4 415
[26] O'Connell A D, Hofheinz M, Ansmann M, Bialczak R C, Lenander M, Lucero E, Neeley M, Sank D, Wang H, Weides M, Wenner J, Martinis J M and Cleland A N 2010 Nature (London) 464 697
[27] Park Y S and Wang H L 2009 Nat. Phys. 5 489
[28] Li Y, Wang Y D, Xue F and Bruder C 2008 % Phys. Rev. B 78 134301
[29] Vitali D, Tombesi P, Woolley M J, Doherty A C and Milburn G J 2007 Phys. Rev. A 76 042336
[30] Grölacher S, Hammerer K, Vanner M R and Aspelmeyer M 2009 Nature (London) 460 724
[31] Genes C, Vitali D, Tombesi P, Gigan S and Aspelmeyer M 2008 Phys. Rev. A 77 033804
[32] Paternostro M, Gigan S, Kim M S, Blaser F, Böhm H R and Aspelmeyer M 2006 New J. Phys. 8 107
[33] Walls D F and Milburn G J 1994 Quantum Optics (Berlin: Springer) p. 296
[34] Huang S M and Agarwal G S 2009 Phys. Rev. A 80 033807
[35] DeJesus E X and Kaufman C 1987 Phys. Rev. A 35 5288
[36] Gardiner C W P and Zoller P 1991 Quantum Noise (Berlin: Springer-Verlag) p. 50
[37] Giovannetti V and Vitali D 2001 Phys. Rev. A % 63 023812
[38] Weisbuch C, Nishioka M, Ishikawa A and Arakawa Y 1992 Phys. Rev. Lett. 69 3314
[49] Wallraff A, Schuster D I, Blais A, Frunzio L, Huang R S, Majer J, Kumar S, Girvin S M and Schoelkopf R J 2004 Nature (London) 431 162
[40] Dobrindt J M, Wilson-Rae I and Kippenberg T J 2008 % Phys. Rev. Lett. 101 263602
[41] Thompson R J, Rempe G and Kimble H J 1992 Phys. Rev. Lett. 68 1132
[42] Fleischhauer M, Imamoglu A and Marangos J P 2005 % Rev. Mod. Phys. 77 633
[43] Verlot P, Tavernarakis A, Briant T, Cohadon P F and Heidmann A 2010 Phys. Rev. Lett. 104 133602
[1] Quantum properties of nonclassical states generated by an optomechanical system with catalytic quantum scissors
Heng-Mei Li(李恒梅), Bao-Hua Yang(杨保华), Hong-Chun Yuan(袁洪春), and Ye-Jun Xu(许业军). Chin. Phys. B, 2023, 32(1): 014202.
[2] Nonreciprocal coupling induced entanglement enhancement in a double-cavity optomechanical system
Yuan-Yuan Liu(刘元元), Zhi-Ming Zhang(张智明), Jun-Hao Liu(刘军浩), Jin-Dong Wang(王金东), and Ya-Fei Yu(於亚飞). Chin. Phys. B, 2022, 31(9): 094203.
[3] Direct measurement of two-qubit phononic entangled states via optomechanical interactions
A-Peng Liu(刘阿鹏), Liu-Yong Cheng(程留永), Qi Guo(郭奇), Shi-Lei Su(苏石磊), Hong-Fu Wang(王洪福), and Shou Zhang(张寿). Chin. Phys. B, 2022, 31(8): 080307.
[4] Photon blockade in a cavity-atom optomechanical system
Zhong Ding(丁忠) and Yong Zhang(张勇). Chin. Phys. B, 2022, 31(7): 070304.
[5] Quantum properties near the instability boundary in optomechanical system
Han-Hao Fang(方晗昊), Zhi-Jiao Deng(邓志姣), Zhigang Zhu(朱志刚), and Yan-Li Zhou(周艳丽). Chin. Phys. B, 2022, 31(3): 030308.
[6] Tunable optomechanically induced transparency and fast-slow light in a loop-coupled optomechanical system
Qinghong Liao(廖庆洪), Xiaoqian Wang(王晓倩), Gaoqian He(何高倩), and Liangtao Zhou(周良涛). Chin. Phys. B, 2021, 30(9): 094205.
[7] Controllable four-wave mixing response in a dual-cavity hybrid optomechanical system
Lei Shang(尚蕾), Bin Chen(陈彬), Li-Li Xing(邢丽丽), Jian-Bin Chen(陈建宾), Hai-Bin Xue(薛海斌), and Kang-Xian Guo(郭康贤). Chin. Phys. B, 2021, 30(5): 054209.
[8] Controlling multiple optomechanically induced transparency in the distant cavity-optomechanical system
Rui-Jie Xiao(肖瑞杰), Gui-Xia Pan(潘桂侠), and Xiao-Ming Xiu(修晓明). Chin. Phys. B, 2021, 30(3): 034209.
[9] Tunable ponderomotive squeezing in an optomechanical system with two coupled resonators
Qin Wu(吴琴). Chin. Phys. B, 2021, 30(2): 020303.
[10] Ground-state cooling based on a three-cavity optomechanical system in the unresolved-sideband regime
Jing Wang(王婧). Chin. Phys. B, 2021, 30(2): 024204.
[11] Nearly invariant boundary entanglement in optomechanical systems
Shi-Wei Cui(崔世威), Zhi-Jiao Deng(邓志姣), Chun-Wang Wu(吴春旺), and Qing-Xia Meng(孟庆霞). Chin. Phys. B, 2021, 30(11): 110311.
[12] Optical nonreciprocity in a piezo-optomechanical system
Yu-Ming Xiao(肖玉铭), Jun-Hao Liu(刘军浩), Qin Wu(吴琴), Ya-Fei Yu(於亚飞), Zhi-Ming Zhang(张智明). Chin. Phys. B, 2020, 29(7): 074204.
[13] The optical nonreciprocal response based on a four-mode optomechanical system
Jing Wang(王婧). Chin. Phys. B, 2020, 29(3): 034210.
[14] Double-passage mechanical cooling in a coupled optomechanical system
Qing-Xia Mu(穆青霞), Chao Lang(郎潮), Wen-Zhao Zhang(张闻钊). Chin. Phys. B, 2019, 28(11): 114206.
[15] Entangling two oscillating mirrors in an optomechanical system via a flying atom
Yu-Bao Zhang(张玉宝), Jun-Hao Liu(刘军浩), Ya-Fei Yu(於亚飞), Zhi-Ming Zhang(张智明). Chin. Phys. B, 2018, 27(7): 074209.
No Suggested Reading articles found!