CLASSICAL AREAS OF PHENOMENOLOGY |
Prev
Next
|
|
|
Normal mode splitting and ground state cooling in a Fabry–Perot optical cavity and transmission line resonator |
Chen Hua-Jun(陈华俊) and Mi Xian-Wu(米贤武)† |
College of Physics, Mechanical and Electrical Engineering, Jishou University, Jishou 416000, China |
|
|
Abstract Optomechanical dynamics in two systems which are a transmission line resonator and Fabrya-Perot optical cavity via radiation-pressure are investigated by linearized quantum Langevin equation. We work in the resolved sideband regime where the oscillator resonance frequency exceeds the cavity linewidth. Normal mode splittings of the mechanical resonator as a pure result of the coupling interaction in the two optomechanical systems is studied, and we make a comparison of normal mode splitting of mechanical resonator between the two systems. In the optical cavity, the normal mode splitting of the movable mirror approaches the latest experiment very well. In addition, an approximation scheme is introduced to demonstrate the ground state cooling, and we make a comparison of cooling between the two systems dominated by two key factors, which are the initial bath temperature and the mechanical quality factor. Since both the normal mode splitting and cooling require working in the resolved sideband regime, whether the normal mode splitting influences the cooling of the mirror is considered. Considering the size of the mechanical resonator and precooling the system, the mechanical resonator in the transmission line resonator system is easier to achieve the ground state cooling than in optical cavity.
|
Received: 06 March 2011
Revised: 27 April 2011
Accepted manuscript online:
|
PACS:
|
42.50.Lc
|
(Quantum fluctuations, quantum noise, and quantum jumps)
|
|
45.80.+r
|
(Control of mechanical systems)
|
|
85.85.+j
|
(Micro- and nano-electromechanical systems (MEMS/NEMS) and devices)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 10647132 and 11104113) and the Scientific Research Fund of Hunan Provincial Education Department of China (Grant No. 10A100). |
Cite this article:
Chen Hua-Jun(陈华俊) and Mi Xian-Wu(米贤武) Normal mode splitting and ground state cooling in a Fabry–Perot optical cavity and transmission line resonator 2011 Chin. Phys. B 20 124203
|
[1] |
Markus A, Simon G, Klemens H and Nikolai K 2010 J. Opt. Soc. Am. B 27 A189
|
[2] |
Fabre C, Pinard M, Bourzeix S, Heidmann A, Giacobino E and Reynaud S 1994 Phys. Rev. A 49 1337
|
[3] |
Mancini S and Tombesi P 1994 Phys. Rev. A 49 4055
|
[4] |
Caves C M, Thorne K S, Drever R W P, Sandberg V D and Zimmermann M 1980 Rev. Mod. Phys. 52 341
|
[5] |
LaHaye M D, Buu O, Camarota B and Schwab K C 2004 % Science 304 74
|
[6] |
Ekinci K L, Yang Y T and Roukes M L 2004 J. Appl. Phys. 95 2682
|
[7] |
Caves C M 1980 Phys. Rev. Lett. 45 75
|
[8] |
Marshall W, Simon C, Penrose R and Bouwmeester D 2003 Phys. Rev. Lett. 91 130401
|
[9] |
Kippenberg T J and Vahala K J 2008 Science % 321 1172
|
[10] |
Pan C N, Li F, Fang J S and Fang M F 2010 Chin. Phys. B 20 020304
|
[11] |
Shang Y N, Yan Z H, Jia X J, Su X L and Xie C D 2010 Chin. Phys. B 20 034209
|
[12] |
Bai Y F, Zhai S Q, Gao J R and Zhang J X 2010 Chin. Phys. B 20 034207
|
[13] |
Gigan S, Böhm H R, Paternostro M, Blaser F, Langer G, Hertzberg J B, Schwab K C, Bäuerle D, Aspelmeyer M and Zeilinger A 2006 Nature (London) 444 67
|
[14] |
Kleckner D and Bouwmeester D 2006 Nature (London) 444 75
|
[15] |
Arcizet O, Cohadon P F, Briant T, Pinard M and Heidmann A 2006 Nature (London) 444 71
|
[16] |
Poggio M, Degen C L, Mamin H J and Rugar D 2007 % Phys. Rev. Lett. 99 017201
|
[17] |
Bhattacharya M and Meystre P 2007 Phys. Rev. Lett. 99 073601
|
[18] |
Xue F, Wang Y D, Liu Y X and Franco N 2007 % Phys. Rev. B 76 205302
|
[19] |
Wilson-Rae I, Nooshi N, Zwerger W and Kippenberg T J 2007 Phys. Rev. Lett. 99 093901
|
[20] |
Marquardt F, Chen J P, Clerk A A and Girvin S M 2007 Phys. Rev. Lett. 99 093902
|
[21] |
Mancini S, Vitali D and Tombesi P 1998 Phys. Rev. Lett. 80 688
|
[22] |
Thompson J D, Zwickl B M, Jayich A M, Marquardt F, Girvin S M and Harris J G E 2008 Nature (London) 452 72
|
[23] |
Wilson-Rae I, Nooshi N, Dobrindt J, Kippenberg T J and Zwerger W 2008 New J. Phys. 10 095007
|
[24] |
Corbitt T, Chen Y, Innerhofer E, Muller-Ebhardt H, Ottaway D, Rehbein H, Sigg D, Whitcomb S, Wipf C and Mavalvala N 2007 Phys. Rev. Lett. 98 150802
|
[25] |
Schliesser A, Rivi"ere R, Anetsberger G, Arcizet O and Kippenberg T J 2008 Nat. Phys. 4 415
|
[26] |
O'Connell A D, Hofheinz M, Ansmann M, Bialczak R C, Lenander M, Lucero E, Neeley M, Sank D, Wang H, Weides M, Wenner J, Martinis J M and Cleland A N 2010 Nature (London) 464 697
|
[27] |
Park Y S and Wang H L 2009 Nat. Phys. 5 489
|
[28] |
Li Y, Wang Y D, Xue F and Bruder C 2008 % Phys. Rev. B 78 134301
|
[29] |
Vitali D, Tombesi P, Woolley M J, Doherty A C and Milburn G J 2007 Phys. Rev. A 76 042336
|
[30] |
Grölacher S, Hammerer K, Vanner M R and Aspelmeyer M 2009 Nature (London) 460 724
|
[31] |
Genes C, Vitali D, Tombesi P, Gigan S and Aspelmeyer M 2008 Phys. Rev. A 77 033804
|
[32] |
Paternostro M, Gigan S, Kim M S, Blaser F, Böhm H R and Aspelmeyer M 2006 New J. Phys. 8 107
|
[33] |
Walls D F and Milburn G J 1994 Quantum Optics (Berlin: Springer) p. 296
|
[34] |
Huang S M and Agarwal G S 2009 Phys. Rev. A 80 033807
|
[35] |
DeJesus E X and Kaufman C 1987 Phys. Rev. A 35 5288
|
[36] |
Gardiner C W P and Zoller P 1991 Quantum Noise (Berlin: Springer-Verlag) p. 50
|
[37] |
Giovannetti V and Vitali D 2001 Phys. Rev. A % 63 023812
|
[38] |
Weisbuch C, Nishioka M, Ishikawa A and Arakawa Y 1992 Phys. Rev. Lett. 69 3314
|
[49] |
Wallraff A, Schuster D I, Blais A, Frunzio L, Huang R S, Majer J, Kumar S, Girvin S M and Schoelkopf R J 2004 Nature (London) 431 162
|
[40] |
Dobrindt J M, Wilson-Rae I and Kippenberg T J 2008 % Phys. Rev. Lett. 101 263602
|
[41] |
Thompson R J, Rempe G and Kimble H J 1992 Phys. Rev. Lett. 68 1132
|
[42] |
Fleischhauer M, Imamoglu A and Marangos J P 2005 % Rev. Mod. Phys. 77 633
|
[43] |
Verlot P, Tavernarakis A, Briant T, Cohadon P F and Heidmann A 2010 Phys. Rev. Lett. 104 133602
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|