Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(12): 124202    DOI: 10.1088/1674-1056/20/12/124202
CLASSICAL AREAS OF PHENOMENOLOGY Prev   Next  

Negative refractive index in a four-level atomic system

Zhang Zhen-Qing(张振清)a)c)d), Liu Zheng-Dong(刘正东)a)b)c)†, Zhao Shun-Cai(赵顺才)b)c), Zheng Jun(郑军)c)d), Ji Yan-Fang(姬艳芳) e), and Liu Nian(刘念)a)c)d)
a Institute of Modern Physics, Nanchang University, Nanchang 330047, China; b School of Materials Science and Engineering, Nanchang University, Nanchang 330031, China; c Engineering Research Centre for Nanotechnology, Nanchang University, Nanchang 330047, China; d School of Science, Nanchang University, Nanchang 330031, Chinae SSchool of Foreign Languages, Wenzhou University, Wenzhou 325035, China
Abstract  A closed four-level system in atomic vapour is proposed, which is made to possess left handedness by using the technique of quantum coherence. The density matrix method is utilized in view of the rotating-wave approximation and the effect of a local field in dense gas. The numerical simulation result shows that the negative permittivity and the negative permeability of the medium can be achieved simultaneously (i.e. the left handedness) in a wider frequency band under appropriate parameter conditions. Furthermore, when analysing the dispersion property of the left-handed material, we can find that the probe beam propagation can be controlled from superluminal to subluminal, or vice versa via changing the detuning of the probe field.
Keywords:  quantum interference      electromagnetically induction      left-handed materials      negative refractive index  
Received:  25 April 2011      Revised:  10 June 2011      Accepted manuscript online: 
PACS:  42.50.Gy (Effects of atomic coherence on propagation, absorption, and Amplification of light; electromagnetically induced transparency and Absorption)  
  42.25.Bs (Wave propagation, transmission and absorption)  
  78.20.Ci (Optical constants (including refractive index, complex dielectric constant, absorption, reflection and transmission coefficients, emissivity))  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 60768001 and 10464002).

Cite this article: 

Zhang Zhen-Qing(张振清), Liu Zheng-Dong(刘正东), Zhao Shun-Cai(赵顺才), Zheng Jun(郑军), Ji Yan-Fang(姬艳芳), and Liu Nian(刘念) Negative refractive index in a four-level atomic system 2011 Chin. Phys. B 20 124202

[1] Veselago V G 1968 Sov. Phys. Usp. 10 509
[2] Zharov A A and Shadrivov V I 2005 Appl. Phys. 97 113906
[3] Smith D R, Padilla W J and Vier D C 2000 Phys. Rev. Lett. 84 4184
[4] Shelby R A, Smith D R and Schultz S 2001 Science 77 292
[5] Lakhtakia A 2004 Int. J. Electron. Commun. 58 229
[6] Zhang Z M and Fu C J 2002 Appl. Phys. Lett. 80 1097
[7] Pendry J B 2001 Phys. Rev. Lett. 85 3966
[8] Smith D R, Padilla W J, Vier D C, Nemat-Nasser S C and Shultz S 2000 Phys. Rev. Lett. 84 4184
[9] Shelby R A, Smith D R, Nemat-Nasser S C and Schultz S 2001 Appl. Phys. Lett. 78 489
[10] Yen T Y, Padilla W J, Fang N, Vier D C, Smith D R, Pendry J B, Basov D N and Zhang X 2004 Science 306 1494
[11] He S L, Ruan Z C, Chen L and Shen J Q 2004 Phys. Rev. B 70 115113
[12] Lakhtakia A 2003 Opt. Express 11 716
[13] Chen L, He S L and Shen L F 2004 Phys. Rev. Lett. 92 107404
[14] Pendry J B, Holden A J, Robbins D J and Stewart W J 1998 J. Phys.: Condens. Matter 10 4785
[15] Pendry J B, Holden A J, Stewart W J and Youngs I 1996 Phys. Rev. Lett. 76 4773
[16] Yannopapas V and Moroz A 2005 J. Phys.: Condens. Matter 17 3717
[17] Wheeler M S, Aitchison J S and Mojahedi M 2005 Phys. Rev. B 72 193103
[18] Eleftheriades G V, Iyer A K and Kremer P C 2004 IEEE Trans. Microwave Theory Tech. 50 2702
[19] Berrier A, Mulot M, Swillo M, Qiu M, Thyln L and Talneau A 2004 Phys. Rev. Lett. 93 073902
[20] Thommen Q and Mandel P 2006 Opt. Lett. 31 1803
[21] Pendry J B 2004 Science 306 1353
[22] Yannopapas V 2006 J. Phys.: Condens. Matter 18 6883
[23] Tretyakov S 2005 Photon. Nanostruct. 3 107
[24] Shen J Q 2006 Phys. Lett. A 357 54
[25] Oktel M O and Mstecapliouglu O E 2004 Phys. Rev. A 70 053806
[26] Dong Z G, Lei S Y, Xu M X, Liu H, Li T, Wang F M and Zhu S N 2008 Phys. Rev. E 77 056609
[27] Thommen O and Mandel P 2006 Phys. Rev. Lett. 96 053601
[28] Zhao S C, Liu Z D, Zheng J and Li G 2011 Chin. Phys. B 20 067802
[29] Chen J, Liu Z D, Zheng J, Pang W and You S P 2010 Chin. Phys. B 19 044201
[30] Yan X A, Wang L Q, Yin B Y, Jiang W J, Zheng H B, Song J P and Zhang Y P 2008 Phys. Lett. A 372 6456
[31] Niu Y P, Gong S Q and Li R X 2005 Opt. Lett. 30 3371
[32] Jackson J D 2001 Classical Electrodynamics 3rd edn. (New York: John Wiley & Sons), Chap. 4 pp. 159-162
[33] Cook D M 1975 The Theory of the Electromagnetic Field (New Jersey: Prentice-Hall, Inc) Chap. 11
[34] Zhang H J, Gong S Q, Niu Y P, Li R X and Xu Z Z 2006 Chin. Phys. Lett. 23 1769
[35] Dogariu A, Kuzmich A and Wang L J 2001 Phys. Rev. A 64 053809
[36] Ramakrishna S A and Pendry J B 2004 Phys. Rev. B 69 115115
[37] Pendry J B and Ramakrishna S A 2003 J. Phys.: Condens. Matter 15 6345
[1] Multiplexing technology based on SQUID for readout of superconducting transition-edge sensor arrays
Xinyu Wu(吴歆宇), Qing Yu(余晴), Yongcheng He(何永成), Jianshe Liu(刘建设), and Wei Chen(陈炜). Chin. Phys. B, 2022, 31(10): 108501.
[2] Chirp-dependent ionization of hydrogen atoms in the presence of super-intense laser pulses
Fengzheng Zhu(朱风筝), Xiaoyu Liu(刘晓煜), Yue Guo(郭月), Ningyue Wang(王宁月), Liguang Jiao(焦利光), and Aihua Liu(刘爱华). Chin. Phys. B, 2021, 30(9): 094209.
[3] Absorption interferometer of two-sided cavity
Miao-Di Guo(郭苗迪) and Hong-Mei Li(李红梅). Chin. Phys. B, 2021, 30(5): 054202.
[4] Stable quantum interference enabled by coexisting detuned and resonant STIRAPs
Dan Liu(刘丹), Yichun Gao(高益淳), Jianqin Xu(许建琴), and Jing Qian(钱静). Chin. Phys. B, 2021, 30(5): 053701.
[5] Unconventional photon blockade in a three-mode system with double second-order nonlinear coupling
Hong-Yu Lin(林宏宇), Hui Yang(杨慧), and Zhi-Hai Yao(姚治海). Chin. Phys. B, 2020, 29(12): 120304.
[6] Optimization of pick-up coils for weakly damped SQUID gradiometers
Kang Yang(杨康), Jialei Wang(王佳磊), Xiangyan Kong(孔祥燕), Ruihu Yang(杨瑞虎), Hua Chen(陈桦). Chin. Phys. B, 2018, 27(5): 050701.
[7] Performance study of aluminum shielded room for ultra-low-field magnetic resonance imaging based on SQUID: Simulations and experiments
Bo Li(李波), Hui Dong(董慧), Xiao-Lei Huang(黄小磊), Yang Qiu(邱阳), Quan Tao(陶泉), Jian-Ming Zhu(朱建明). Chin. Phys. B, 2018, 27(2): 020701.
[8] Dynamic properties of atomic collective decay in cavity quantum electrodynamics
Yu-Feng Han(韩玉峰), Cheng-Jie Zhu(朱成杰), Xian-Shan Huang(黄仙山), Ya-Ping Yang(羊亚平). Chin. Phys. B, 2018, 27(12): 124206.
[9] Modulation depth of series SQUIDs modified by Josephson junction area
Jie Liu(刘杰), He Gao(高鹤), Gang Li(李刚), Zheng Wei Li(李正伟), Kamal Ahmada, Zhang Ying Shan(张颖珊), Jian She Liu(刘建设), Wei Chen(陈炜). Chin. Phys. B, 2017, 26(9): 098501.
[10] Quantum interference between heralded single photon stateand coherent state
Lei Yang(杨磊), Xiaoxin Ma(马晓欣), Xiaoying Li(李小英). Chin. Phys. B, 2017, 26(7): 074206.
[11] Macroscopic resonant tunneling in an rf-SQUID flux qubit under a single-cycle sinusoidal driving
Jianxin Shi(史建新), Weiwei Xu(许伟伟), Guozhu Sun(孙国柱), Jian Chen(陈健), Lin Kang(康琳), Peiheng Wu(吴培亨). Chin. Phys. B, 2017, 26(4): 047402.
[12] Ballistic transport and quantum interference in InSb nanowire devices
Sen Li(李森), Guang-Yao Huang(黄光耀), Jing-Kun Guo(郭景琨), Ning Kang(康宁), Philippe Caroff, Hong-Qi Xu(徐洪起). Chin. Phys. B, 2017, 26(2): 027305.
[13] Tunable thermoelectric properties in bended graphene nanoribbons
Chang-Ning Pan(潘长宁), Jun He(何军), Mao-Fa Fang(方卯发). Chin. Phys. B, 2016, 25(7): 078102.
[14] Effects of magnetic field on photon-induced quantum transport in a single dot-cavity system
Nzar Rauf Abdullah, Aziz H Fatah, Jabar M A Fatah. Chin. Phys. B, 2016, 25(11): 114206.
[15] Entanglement and non-Markovianity of a multi-level atom decaying in a cavity
Zi-Long Fan(范子龙), Yu-Kun Ren(任玉坤), Hao-Sheng Zeng(曾浩生). Chin. Phys. B, 2016, 25(1): 010303.
No Suggested Reading articles found!