CLASSICAL AREAS OF PHENOMENOLOGY |
Prev
Next
|
|
|
Negative refractive index in a four-level atomic system |
Zhang Zhen-Qing(张振清)a)c)d), Liu Zheng-Dong(刘正东)a)b)c)†, Zhao Shun-Cai(赵顺才)b)c), Zheng Jun(郑军)c)d), Ji Yan-Fang(姬艳芳) e), and Liu Nian(刘念)a)c)d) |
a Institute of Modern Physics, Nanchang University, Nanchang 330047, China; b School of Materials Science and Engineering, Nanchang University, Nanchang 330031, China; c Engineering Research Centre for Nanotechnology, Nanchang University, Nanchang 330047, China; d School of Science, Nanchang University, Nanchang 330031, China; e SSchool of Foreign Languages, Wenzhou University, Wenzhou 325035, China |
|
|
Abstract A closed four-level system in atomic vapour is proposed, which is made to possess left handedness by using the technique of quantum coherence. The density matrix method is utilized in view of the rotating-wave approximation and the effect of a local field in dense gas. The numerical simulation result shows that the negative permittivity and the negative permeability of the medium can be achieved simultaneously (i.e. the left handedness) in a wider frequency band under appropriate parameter conditions. Furthermore, when analysing the dispersion property of the left-handed material, we can find that the probe beam propagation can be controlled from superluminal to subluminal, or vice versa via changing the detuning of the probe field.
|
Received: 25 April 2011
Revised: 10 June 2011
Accepted manuscript online:
|
PACS:
|
42.50.Gy
|
(Effects of atomic coherence on propagation, absorption, and Amplification of light; electromagnetically induced transparency and Absorption)
|
|
42.25.Bs
|
(Wave propagation, transmission and absorption)
|
|
78.20.Ci
|
(Optical constants (including refractive index, complex dielectric constant, absorption, reflection and transmission coefficients, emissivity))
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 60768001 and 10464002). |
Cite this article:
Zhang Zhen-Qing(张振清), Liu Zheng-Dong(刘正东), Zhao Shun-Cai(赵顺才), Zheng Jun(郑军), Ji Yan-Fang(姬艳芳), and Liu Nian(刘念) Negative refractive index in a four-level atomic system 2011 Chin. Phys. B 20 124202
|
[1] |
Veselago V G 1968 Sov. Phys. Usp. 10 509
|
[2] |
Zharov A A and Shadrivov V I 2005 Appl. Phys. 97 113906
|
[3] |
Smith D R, Padilla W J and Vier D C 2000 Phys. Rev. Lett. 84 4184
|
[4] |
Shelby R A, Smith D R and Schultz S 2001 Science 77 292
|
[5] |
Lakhtakia A 2004 Int. J. Electron. Commun. 58 229
|
[6] |
Zhang Z M and Fu C J 2002 Appl. Phys. Lett. 80 1097
|
[7] |
Pendry J B 2001 Phys. Rev. Lett. 85 3966
|
[8] |
Smith D R, Padilla W J, Vier D C, Nemat-Nasser S C and Shultz S 2000 Phys. Rev. Lett. 84 4184
|
[9] |
Shelby R A, Smith D R, Nemat-Nasser S C and Schultz S 2001 Appl. Phys. Lett. 78 489
|
[10] |
Yen T Y, Padilla W J, Fang N, Vier D C, Smith D R, Pendry J B, Basov D N and Zhang X 2004 Science 306 1494
|
[11] |
He S L, Ruan Z C, Chen L and Shen J Q 2004 Phys. Rev. B 70 115113
|
[12] |
Lakhtakia A 2003 Opt. Express 11 716
|
[13] |
Chen L, He S L and Shen L F 2004 Phys. Rev. Lett. 92 107404
|
[14] |
Pendry J B, Holden A J, Robbins D J and Stewart W J 1998 J. Phys.: Condens. Matter 10 4785
|
[15] |
Pendry J B, Holden A J, Stewart W J and Youngs I 1996 Phys. Rev. Lett. 76 4773
|
[16] |
Yannopapas V and Moroz A 2005 J. Phys.: Condens. Matter 17 3717
|
[17] |
Wheeler M S, Aitchison J S and Mojahedi M 2005 Phys. Rev. B 72 193103
|
[18] |
Eleftheriades G V, Iyer A K and Kremer P C 2004 IEEE Trans. Microwave Theory Tech. 50 2702
|
[19] |
Berrier A, Mulot M, Swillo M, Qiu M, Thyln L and Talneau A 2004 Phys. Rev. Lett. 93 073902
|
[20] |
Thommen Q and Mandel P 2006 Opt. Lett. 31 1803
|
[21] |
Pendry J B 2004 Science 306 1353
|
[22] |
Yannopapas V 2006 J. Phys.: Condens. Matter 18 6883
|
[23] |
Tretyakov S 2005 Photon. Nanostruct. 3 107
|
[24] |
Shen J Q 2006 Phys. Lett. A 357 54
|
[25] |
Oktel M O and Mstecapliouglu O E 2004 Phys. Rev. A 70 053806
|
[26] |
Dong Z G, Lei S Y, Xu M X, Liu H, Li T, Wang F M and Zhu S N 2008 Phys. Rev. E 77 056609
|
[27] |
Thommen O and Mandel P 2006 Phys. Rev. Lett. 96 053601
|
[28] |
Zhao S C, Liu Z D, Zheng J and Li G 2011 Chin. Phys. B 20 067802
|
[29] |
Chen J, Liu Z D, Zheng J, Pang W and You S P 2010 Chin. Phys. B 19 044201
|
[30] |
Yan X A, Wang L Q, Yin B Y, Jiang W J, Zheng H B, Song J P and Zhang Y P 2008 Phys. Lett. A 372 6456
|
[31] |
Niu Y P, Gong S Q and Li R X 2005 Opt. Lett. 30 3371
|
[32] |
Jackson J D 2001 Classical Electrodynamics 3rd edn. (New York: John Wiley & Sons), Chap. 4 pp. 159-162
|
[33] |
Cook D M 1975 The Theory of the Electromagnetic Field (New Jersey: Prentice-Hall, Inc) Chap. 11
|
[34] |
Zhang H J, Gong S Q, Niu Y P, Li R X and Xu Z Z 2006 Chin. Phys. Lett. 23 1769
|
[35] |
Dogariu A, Kuzmich A and Wang L J 2001 Phys. Rev. A 64 053809
|
[36] |
Ramakrishna S A and Pendry J B 2004 Phys. Rev. B 69 115115
|
[37] |
Pendry J B and Ramakrishna S A 2003 J. Phys.: Condens. Matter 15 6345
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|