Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(9): 097102    DOI: 10.1088/1674-1056/19/9/097102
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Effect of local atomic disorder on the half-metallicity of full-Heusler Co2FeSi alloy: a first-principles study

Li Guan-Nan(李冠男)a)b), Jin Ying-Jiu(金迎九)a), and Lee Jae Il(李在一)c)
a Department of Physics, College of Science, Yanbian University, Yanji 133002, China; b Huaiyin Institute of Technology, Huai'an 223003, China; c Department of Physics, Inha University, Incheon 402-751, Republic of Korea
Abstract  This paper investigates the effect of atomic disorder on the electronic structure, magnetism, and half-metallicity of full-Heusler Co2FeSi alloy by using the full-potential linearized augmented plane wave method within the generalized gradient approximation (GGA) and GGA+U schemes. It considers three types of atomic disorders in Co2FeSi alloy: the Co–Fe, Co–Si, and Fe–Si disorders. Total energy calculations show that of the three types of disorders, the Fe–Si disorder is more likely to occur. It finds that for the Co–Si disorder, additional states appear in the minority band-gap at the EF and the half-metallcity is substantially destroyed, regardless of the disorder level. On the other hand, the Co–Fe and Fe–Si disorders have little effect on the half-metallicity at a low disorder level. When increasing the disorder levels, the half-metallcity is destroyed at about 9% of the Co–Fe disorder level, while that stays at 25% of the Fe–Si disorder level.
Keywords:  half-metallicity      full-Heusler alloy      electronic structure      full-potential linearized augmented plane wave method  
Received:  18 December 2009      Revised:  23 March 2010      Accepted manuscript online: 
PACS:  7115A  
  7120H  
Fund: Project supported by the National Natural Science Foundation of China (Grant No 10664005).

Cite this article: 

Li Guan-Nan(李冠男), Jin Ying-Jiu(金迎九), and Lee Jae Il(李在一) Effect of local atomic disorder on the half-metallicity of full-Heusler Co2FeSi alloy: a first-principles study 2010 Chin. Phys. B 19 097102

[1] de Groot R A, Mueller F M, van Engen P G and Buschow K H J 1983 it Phys. Rev. Lett. 50 2024
[2] Ishida S, Fujii S, Kashiwagi S and Asano S 1995 J. Phys. Soc. Jpn. 64 2152
[3] Galanakis I, Dederichs P H and Papanikolaou N 2002 Phys. Rev. B 66 174429
[4] Wurmehl S, Fecher G H, Kandpal H C, Ksenofontov V, Felser C, Lin H J and Morais J 2005 Phys. Rev. B 72 184434
[5] Hohenberg P and Kohn W 1964 Phys. Rev. B 136 864
[6] Kohn W and Sham L J 1965 Phys. Rev. A 140 1133
[7] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. bf 77 3865
[8] Kandpal H C, Fecher G H and Felser C 2006 Phys. Rev. B bf 73 094422
[9] Anisimov V I, Aryasetiawan F and Lichtenstein A I 1997 J. Phys.: Condens. Matter 9 767
[10] Fang Z J, Shi L J, Liu Y H and Liu Z 2009 Chin. Phys. B bf 17 4279
[11] Wang Z J, Li S C, Wang L Y and Liu Z 2009 Chin. Phys. B bf 18 2992
[12] Ying M J, Zhang P and Du X L 2009 Chin. Phys. B 18 2945
[13] Yun J N and Zhang Z Y 2009 Chin. Phys. B 18 275
[14] Galanakis I and Mavropoulos Ph 2007 J. Phys.: Condens. Matter 19 315213
[15] Picozzi S, Continenza A and Freeman A J 2004 Phys. Rev. B bf 69 094423
[16] Galanakis I, "Ozdovgan K, Aktac s B and c Sac siovglu E 2006 Appl. Phys. Lett. 89 042502
[17] Gercsi Z and Hono K 2007 J. Phys.: Condens. Matter 19 326216
[18] Wimmer E, Krakauer H, Weinert M and Freeman A J 1981 Phys. Rev. B 24 864
[19] http://www.flapw.de
[20] Koelling D D and Harmon B N 1977 J. Phys. C: Solid State Phys. 10 3107
[21] Niculescu V, Budnick J I, Hines W A, Raj K, Pickart S and Skalski S 1979 Phys. Rev. B 19 452
[22] Niculescu V, Burch T J, Raj K and Budnick J I 1977 J. Magn. Magn. Mater. 5 60
[23] Kandpal H C, Fecher G H and Felser C 2007 J. Phys. D: Appl. Phys. 40 1507
[24] Antonov V N, Kukusta D A, Shpak A P and Yaresko A N 2008 it Condensed Matter Physics 11 627
[25] Teramura Y, Tanaka A and Jo T 1996 J. Phys. Soc. Jpn. bf 65 1053
[26] Park C H, Kim I G, Lee B C and Lee J I 2004 Phys. Stat. Sol. (b) 241 1419
[27] H"ulsen B, Scheffler M and Kratzer P 2009 Phys. Rev. B bf 79 094407
[28] Khosravizadeh S, Hashemifar S J and Akbarzadeh H 2009 Phys. Rev. B 79 235203
[29] Orgassa D, Fujiwara H, Schulthess T C and Butler W H 1999 Phys. Rev. B 60 13237
[1] Predicting novel atomic structure of the lowest-energy FenP13-n(n=0-13) clusters: A new parameter for characterizing chemical stability
Yuanqi Jiang(蒋元祺), Ping Peng(彭平). Chin. Phys. B, 2023, 32(4): 047102.
[2] High-temperature ferromagnetism and strong π-conjugation feature in two-dimensional manganese tetranitride
Ming Yan(闫明), Zhi-Yuan Xie(谢志远), and Miao Gao(高淼). Chin. Phys. B, 2023, 32(3): 037104.
[3] Bandgap evolution of Mg3N2 under pressure: Experimental and theoretical studies
Gang Wu(吴刚), Lu Wang(王璐), Kuo Bao(包括), Xianli Li(李贤丽), Sheng Wang(王升), and Chunhong Xu(徐春红). Chin. Phys. B, 2022, 31(6): 066205.
[4] Measurement of electronic structure in van der Waals ferromagnet Fe5-xGeTe2
Kui Huang(黄逵), Zhenxian Li(李政贤), Deping Guo(郭的坪), Haifeng Yang(杨海峰), Yiwei Li(李一苇),Aiji Liang(梁爱基), Fan Wu(吴凡), Lixuan Xu(徐丽璇), Lexian Yang(杨乐仙), Wei Ji(季威),Yanfeng Guo(郭艳峰), Yulin Chen(陈宇林), and Zhongkai Liu(柳仲楷). Chin. Phys. B, 2022, 31(5): 057404.
[5] First principles investigation on Li or Sn codoped hexagonal tungsten bronzes as the near-infrared shielding material
Bo-Shen Zhou(周博深), Hao-Ran Gao(高浩然), Yu-Chen Liu(刘雨辰), Zi-Mu Li(李子木),Yang-Yang Huang(黄阳阳), Fu-Chun Liu(刘福春), and Xiao-Chun Wang(王晓春). Chin. Phys. B, 2022, 31(5): 057804.
[6] Temperature dependence of bismuth structures under high pressure
Xiaobing Fan(范小兵), Shikai Xiang(向士凯), and Lingcang Cai(蔡灵仓). Chin. Phys. B, 2022, 31(5): 056101.
[7] Nonlinear optical properties in n-type quadruple δ-doped GaAs quantum wells
Humberto Noverola-Gamas, Luis Manuel Gaggero-Sager, and Outmane Oubram. Chin. Phys. B, 2022, 31(4): 044203.
[8] High-throughput computational material screening of the cycloalkane-based two-dimensional Dion—Jacobson halide perovskites for optoelectronics
Guoqi Zhao(赵国琪), Jiahao Xie(颉家豪), Kun Zhou(周琨), Bangyu Xing(邢邦昱), Xinjiang Wang(王新江), Fuyu Tian(田伏钰), Xin He(贺欣), and Lijun Zhang(张立军). Chin. Phys. B, 2022, 31(3): 037104.
[9] Electronic structure and spin–orbit coupling in ternary transition metal chalcogenides Cu2TlX2 (X = Se, Te)
Na Qin(秦娜), Xian Du(杜宪), Yangyang Lv(吕洋洋), Lu Kang(康璐), Zhongxu Yin(尹中旭), Jingsong Zhou(周景松), Xu Gu(顾旭), Qinqin Zhang(张琴琴), Runzhe Xu(许润哲), Wenxuan Zhao(赵文轩), Yidian Li(李义典), Shuhua Yao(姚淑华), Yanfeng Chen(陈延峰), Zhongkai Liu(柳仲楷), Lexian Yang(杨乐仙), and Yulin Chen(陈宇林). Chin. Phys. B, 2022, 31(3): 037101.
[10] Transition metal anchored on C9N4 as a single-atom catalyst for CO2 hydrogenation: A first-principles study
Jia-Liang Chen(陈嘉亮), Hui-Jia Hu(胡慧佳), and Shi-Hao Wei(韦世豪). Chin. Phys. B, 2022, 31(10): 107306.
[11] First-principles study of structural and opto-electronic characteristics of ultra-thin amorphous carbon films
Xiao-Yan Liu(刘晓艳), Lei Wang(王磊), and Yi Tong(童祎). Chin. Phys. B, 2022, 31(1): 016102.
[12] Spin and spin-orbit coupling effects in nickel-based superalloys: A first-principles study on Ni3Al doped with Ta/W/Re
Liping Liu(刘立平), Jin Cao(曹晋), Wei Guo(郭伟), and Chongyu Wang(王崇愚). Chin. Phys. B, 2022, 31(1): 016105.
[13] Magnetic and electronic properties of two-dimensional metal-organic frameworks TM3(C2NH)12
Zhen Feng(冯振), Yi Li(李依), Yaqiang Ma(马亚强), Yipeng An(安义鹏), and Xianqi Dai(戴宪起). Chin. Phys. B, 2021, 30(9): 097102.
[14] Single boron atom anchored on graphitic carbon nitride nanosheet (B/g-C2N) as a photocatalyst for nitrogen fixation: A first-principles study
Hao-Ran Zhu(祝浩然), Jia-Liang Chen(陈嘉亮), and Shi-Hao Wei(韦世豪). Chin. Phys. B, 2021, 30(8): 083101.
[15] High-throughput identification of one-dimensional atomic wires and first principles calculations of their electronic states
Feng Lu(卢峰), Jintao Cui(崔锦韬), Pan Liu(刘盼), Meichen Lin(林玫辰), Yahui Cheng(程雅慧), Hui Liu(刘晖), Weichao Wang(王卫超), Kyeongjae Cho, and Wei-Hua Wang(王维华). Chin. Phys. B, 2021, 30(5): 057304.
No Suggested Reading articles found!