Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(8): 084101    DOI: 10.1088/1674-1056/19/8/084101
CLASSICAL AREAS OF PHENOMENOLOGY Prev   Next  

Finite-difference time-domain studies of low-frequency stop band in superconductor-dielectric superlattice

Wang Shen-Yun(王身云)a)b), Liu Shao-Bin(刘少斌)a), and Le-Wei Joshua Lib)
a College of Information Science and Technology, Nanjing University of Aeronautics & Astronautics, Nanjing 210016, China; b Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117576, Singapore
Abstract  The transmission coefficients of electromagnetic (EM) waves due to a superconductor-dielectric superlattice are numerically calculated. Shift operator finite difference time domain (SO-FDTD) method is used in the analysis. By using the SO-FDTD method, the transmission spectrum is obtained and its characteristics are investigated for different thicknesses of superconductor layers and dielectric layers, from which a stop band starting from zero frequency can be apparently observed. The relation between this low-frequency stop band and relative temperature, and also the London penetration depth at a superconductor temperature of zero degree are discussed, separately. The low-frequency stop band properties of superconductor-dielectric superlattice thus are well disclosed.
Keywords:  shift operator finite difference time domain method      superconductor      superconductor-dielectric superlattice      high-pass filter  
Received:  23 September 2009      Revised:  18 January 2010      Accepted manuscript online: 
PACS:  74.78.Fk (Multilayers, superlattices, heterostructures)  
  74.25.Nf  
  77.22.Ch (Permittivity (dielectric function))  
Fund: Project supported partly by the Open Research Program in State Key Laboratory of Millimeter Waves of China (Grant No. K200802), and partly by the National Natural Science Foundation of China (Grant No. 60971122).

Cite this article: 

Wang Shen-Yun(王身云), Liu Shao-Bin(刘少斌), and Le-Wei Joshua Li Finite-difference time-domain studies of low-frequency stop band in superconductor-dielectric superlattice 2010 Chin. Phys. B 19 084101

[1] Liu N H 1997 wxPhys. Rev. B55 4097
[2] Xu X S, Xiong Z G, Jin A Z, Chen H D and Zhang D Z 2007 wxActa Phys. Sin.56 916 (in Chinese)
[3] Liu S B, Zhu C X and Yuan N C 2005 wxActa Phys. Sin.54 2804 (in Chinese)
[4] Wang S Y and Liu S B 2009 wxActa Phys. Sin.58 7062 (in Chinese)
[5] Dong J W, Hu X H and Wang H Z 2007 wxChin. Phys.16 1057
[6] McGurn A R and Maradudin A A 1993 wxPhys. Rev. B48 17576
[7] Raymond Ooi C H and Au Yeung T C 1999 wxPhys. Lett. A259 413
[8] Raymond Ooi C H, Au Yeung T C, Kam C H and Lim T K 2000 wxPhys. Rev. B61 5920
[9] Chen Y B, Zhang C, Zhu Y Y, Zhu S N and Ming N B 2002 wxMater. Lett.55 12
[10] Wu C J, Chen M S and Yang T J 2005 wxPhysica C432 133
[11] Ge D B, Wu Y L and Zhu X Q 2003 wxChin. J. Radio Sci.18 359 (in Chinese)
[12] Berenger J P 1994 wxJ. Comput. Phys.114 185
[1] Focused-ion-beam assisted technique for achieving high pressure by uniaxial-pressure devices
Di Liu(刘迪), Xingyu Wang(王兴玉), Zezhong Li(李泽众), Xiaoyan Ma(马肖燕), and Shiliang Li(李世亮). Chin. Phys. B, 2023, 32(4): 047401.
[2] Abnormal magnetoresistance effect in the Nb/Si superconductor-semiconductor heterojunction
Zhi-Wei Hu(胡志伟) and Xiang-Gang Qiu(邱祥冈). Chin. Phys. B, 2023, 32(3): 037401.
[3] Chiral symmetry protected topological nodal superconducting phase and Majorana Fermi arc
Mei-Ling Lu(卢美玲), Yao Wang(王瑶), He-Zhi Zhang(张鹤之), Hao-Lin Chen(陈昊林), Tian-Yuan Cui(崔天元), and Xi Luo(罗熙). Chin. Phys. B, 2023, 32(2): 027301.
[4] Effect of thickness on magnetic properties of single domain GdBCO bulk superconductors
Ping Gao(高平), Wan-Min Yang(杨万民), Ting-Ting Wu(武婷婷), Miao Wang(王妙), and Kun Liu(刘坤). Chin. Phys. B, 2023, 32(2): 027401.
[5] Majorana zero modes induced by skyrmion lattice
Dong-Yang Jing(靖东洋), Huan-Yu Wang(王寰宇), Wen-Xiang Guo(郭文祥), and Wu-Ming Liu(刘伍明). Chin. Phys. B, 2023, 32(1): 017401.
[6] Josephson vortices and intrinsic Josephson junctions in the layered iron-based superconductor Ca10(Pt3As8)((Fe0.9Pt0.1)2As2)5
Qiang-Tao Sui(随强涛) and Xiang-Gang Qui(邱祥冈). Chin. Phys. B, 2022, 31(9): 097403.
[7] Finite superconducting square wire-network based on two-dimensional crystalline Mo2C
Zhen Liu(刘震), Zi-Xuan Yang(杨子萱), Chuan Xu(徐川), Jia-Ji Zhao(赵嘉佶), Lu-Junyu Wang(王陆君瑜), Yun-Qi Fu(富云齐), Xue-Lei Liang(梁学磊), Hui-Ming Cheng(成会明), Wen-Cai Ren(任文才), Xiao-Song Wu(吴孝松), and Ning Kang(康宁). Chin. Phys. B, 2022, 31(9): 097404.
[8] Exploring Majorana zero modes in iron-based superconductors
Geng Li(李更), Shiyu Zhu(朱诗雨), Peng Fan(范朋), Lu Cao(曹路), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2022, 31(8): 080301.
[9] Influence of Rashba spin-orbit coupling on Josephson effect in triplet superconductor/two-dimensional semiconductor/triplet superconductor junctions
Bin-Hao Du(杜彬豪), Man-Ni Chen(陈嫚妮), and Liang-Bin Hu(胡梁宾). Chin. Phys. B, 2022, 31(7): 077201.
[10] Photothermal-chemical synthesis of P-S-H ternary hydride at high pressures
Tingting Ye(叶婷婷), Hong Zeng(曾鸿), Peng Cheng(程鹏), Deyuan Yao(姚德元), Xiaomei Pan(潘孝美), Xiao Zhang(张晓), and Junfeng Ding(丁俊峰). Chin. Phys. B, 2022, 31(6): 067402.
[11] Surface-induced orbital-selective band reconstruction in kagome superconductor CsV3Sb5
Linwei Huai(淮琳崴), Yang Luo(罗洋), Samuel M. L. Teicher, Brenden R. Ortiz, Kaize Wang(王铠泽),Shuting Peng(彭舒婷), Zhiyuan Wei(魏志远), Jianchang Shen(沈建昌), Bingqian Wang(王冰倩), Yu Miao(缪宇),Xiupeng Sun(孙秀鹏), Zhipeng Ou(欧志鹏), Stephen D. Wilson, and Junfeng He(何俊峰). Chin. Phys. B, 2022, 31(5): 057403.
[12] Majorana fermions induced fast- and slow-light in a hybrid semiconducting nanowire/superconductor device
Hua-Jun Chen(陈华俊), Peng-Jie Zhu(朱鹏杰), Yong-Lei Chen(陈咏雷), and Bao-Cheng Hou(侯宝成). Chin. Phys. B, 2022, 31(2): 027802.
[13] Raman phonon anomalies in Sr(Fe1-xCox)2As2
Yanxing Yang(杨彦兴), Hewei Zhang(张鹤巍), and Haizheng Zhuang(庄海正). Chin. Phys. B, 2022, 31(2): 027401.
[14] Designing current-strain-assisted superconductor-ferromagnet multi-bit memories
Hasnain Mehdi Jafri, Jing Wang(王静), Xiao-Ming Shi(施小明), De-Shan Liang(梁德山), and Hou-Bing Huang(黄厚兵). Chin. Phys. B, 2022, 31(11): 118501.
[15] Growth and characterization of superconducting Ca1-xNaxFe2As2 single crystals by NaAs-flux method
Hong-Lin Zhou(周宏霖), Yu-Hao Zhang(张与豪), Yang Li(李阳), Shi-Liang Li(李世亮), Wen-Shan Hong(洪文山), and Hui-Qian Luo(罗会仟). Chin. Phys. B, 2022, 31(11): 117401.
No Suggested Reading articles found!