|
|
Geometrical, energetic and electronic properties of Aun–(C3H6O)m complexes (n=3,5, m ≤ n): A density functional theory study |
Li Ying-Chun(李迎春), Yang Chuan-Lu(杨传路)†, Sun Mei-Yu(孙美玉), Li Xiao-Xia(李晓霞),An Yi-Peng(安义鹏), and Wang Mei-Shan(王美山) |
School of Physics, Ludong University, Yantai 264011, China |
|
|
Abstract The interactions of acetone molecules with clusters of Au3 and Au5 are investigated by using a density functional theory (DFT) within a generalized gradient approximation (GGA). The geometries, adsorption energies and deformation electron density distributions are used to analyse these interactions. The present calculations show that more than one acetone molecule can be adsorbed onto small gold clusters, and this adsorption is different from that of single molecule absorption. The coordination number of the adsorption site on the gold cluster is the dominant factor responsible for the strength of the interactions. The effects of the Au–O bond lengths in the complexes on adsorption energies between Au clusters and acetone molecules are also examined.
|
Received: 31 March 2009
Revised: 06 January 2010
Accepted manuscript online:
|
PACS:
|
71.20.Rv
|
(Polymers and organic compounds)
|
|
61.46.Bc
|
(Structure of clusters (e.g., metcars; not fragments of crystals; free or loosely aggregated or loosely attached to a substrate))
|
|
68.43.Mn
|
(Adsorption kinetics ?)
|
|
71.15.Mb
|
(Density functional theory, local density approximation, gradient and other corrections)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 10674114 and 10974078). |
Cite this article:
Li Ying-Chun(李迎春), Yang Chuan-Lu(杨传路), Sun Mei-Yu(孙美玉), Li Xiao-Xia(李晓霞),An Yi-Peng(安义鹏), and Wang Mei-Shan(王美山) Geometrical, energetic and electronic properties of Aun–(C3H6O)m complexes (n=3,5, m ≤ n): A density functional theory study 2010 Chin. Phys. B 19 083602
|
[1] |
West J L and Halas N J 2003 Ann. Rev. Biomed. Eng. 5 285
|
[2] |
Jin R, Cao Y, Mirkin C A, Kelly K L, Schatz G C and Zheng J G 2001 Science 294 1901
|
[3] |
H"akkinen H, Yoon B and Landman U 2003 J. Phys. Chem. A 107 6168
|
[4] |
Lee T H and Ervin K M 1994 J. Phys. Chem. 98 10023
|
[5] |
Valden M, Lai X and Goodman D W 1998 Science 281 1647
|
[6] |
Letardi S and Cleri F 2004 J. Chem. Phys. 120 10062
|
[7] |
Rousseau R and Marx D 2000 J. Chem. Phys. 112 761
|
[8] |
Li Y C, Yang C L, Sun M Y, Li X X, An Y P, Wang M S, Ma X G and Wang D H 2009 J. Phys. Chem. A 113 1353
|
[9] |
Shafai G S, Shetty S, Krishnamurty S, Shah V and Kanhere D G 2007 J. Chem. Phys. 126 014704
|
[10] |
Lavrich D J, Wetterer S M, Bernasek S L and Scoles G 1998 J. Phys. Chem. B 102 3456
|
[11] |
Riederer D E, Chatterjee R, Rosencrance S W, Postawa Z, Dunbar T D, Allara D L and Winograd N 1997 J. Am. Chem. Soc. 119 8089
|
[12] |
Joo S W, Han S W and Kim K 2001 J. Colloid Interface Sci. 240 391
|
[13] |
Gottschalck J and Hammer B 2002 J. Chem. Phys. 116 784
|
[14] |
Majumder C, Briere T M, Mizuseki H and Kawazoe Y 2002 J. Chem. Phys. 117 2819
|
[15] |
McNally H, Janes D B, Kasibhatla B and Kubiak C P 2002 Superlattices Microstruct. 31 239
|
[16] |
Zhai H J and Wang L S 2005 J. Chem. Phys. 122 051101
|
[17] |
Varganov S A, Olson R M, Gordon M S and Metiu H 2004 J. Chem. Phys. 120 5169
|
[18] |
Ge G X, Cao H B, Jing Q and Luo Y H 2009 Acta Phys. Sin. 58 8236 (in Chinese)
|
[19] |
Varganov S A, Olson R M, Gordon M S, Mills G and Metiu H 2002 J. Chem. Phys. 119 2531
|
[20] |
Hayashi T, Tanaka K and Haruta M 1998 J. Catal. 178 566
|
[21] |
Shankar S S, Rai A, Ankamwar B, Singh A, Ahmad A and Sastry M 2004 Nature Mater. 3 482
|
[22] |
Li G, Lauer M, Schulz A, Boettcher C, Li F and Fuhrhop J H 2003 Langmuir. 19 6483
|
[23] |
Kryachko E S and Remacle F 2005 J. Phys. Chem. B 109 22746
|
[24] |
Hirabayashi S, Okawa R, Ichihashi M, Kondow T and Kawazoe K 2007 J. Phys. Chem. A 111 7664
|
[25] |
Delley B 1990 J. Chem. Phys. 92 508
|
[26] |
Delley B 2000 J. Chem. Phys. 113 7756
|
[27] |
Accelrys 2005 Materials Studio Release3.2 (San Diego: Accelrys Software, Inc.)
|
[28] |
Koelling D D and Harmon B N 1977 J. Phys. C: Solid State Phys. 10 3107
|
[29] |
Douglas M and Kroll N M 1974 Acta Phys. 82 89
|
[30] |
Perdew J, Burke P K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
|
[31] |
Perdew J P, Burke K and Ernzerhof M 1997 Phys. Rev. Lett. 78 1396(E)
|
[32] |
Delley B 2006 J. Phys. Chem. A 110 13632
|
[33] |
Wang J, Wang G and Zhao J 2002 Phys. Rev. B 66 035418
|
[34] |
Nelson R and Pierce L 1965 J. Mol. Spectrosc. 18 344
|
[35] |
Cheeseman M A and Eyler J R 1992 J. Phys. Chem. 96 1082
|
[36] |
Li X, Tollberg B, Hu X and Wang L 2006 J. Phys. Chem. 124 114309
|
[37] |
Fern'andez E M, Soler J M, Garz'on I L and Balb'as L C 2004 Phys. Rev. B 70 165403
|
[38] |
P'erez G B, Garz'on I L and Novaro O 1999 J. Mol. Struc. (Theochem) 493 225
|
[39] |
Delley B 1986 Chem. Phys. Lett. 110 329
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|