|
|
Interpreting a period-adding bifurcation scenario in neural bursting patterns using border-collision bifurcation in a discontinuous map of a slow control variable |
Mo Juan(莫娟)a), Li Yu-Ye(李玉叶)a), Wei Chun-Ling(魏春玲)a), Yang Ming-Hao(杨明浩)a), Gu Hua-Guang(古华光)a)†ger, Qu Shi-Xian(屈世显)b), and Ren Wei(任维) a) |
a College of Life Science, Shaanxi Normal University, Xi'an 710062, China; b College of Physics and Information Technology, Shaanxi Normal University, Xi'an 710062, China |
|
|
Abstract To further identify the dynamics of the period-adding bifurcation scenarios observed in both biological experiment and simulations with the differential Chay model, this paper fits a discontinuous map of a slow control variable of the Chay model based on simulation results. The procedure of period adding bifurcation scenario from period k to period k+1 bursting (k=1, 2, 3, 4) involved in the period-adding cascades and the stochastic effect of noise near each bifurcation point is also reproduced in the discontinuous map. Moreover, dynamics of the border-collision bifurcation are identified in the discontinuous map, which is employed to understand the experimentally observed period increment sequence. The simple discontinuous map is of practical importance in the modeling of collective behaviours of neural populations like synchronization in large neural circuits.
|
Received: 30 December 2009
Revised: 24 January 2010
Accepted manuscript online:
|
PACS:
|
87.19.L-
|
(Neuroscience)
|
|
87.19.R-
|
(Mechanical and electrical properties of tissues and organs)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 10774088, 10772101, 30770701 and 10875076) and the Fundamental Research Funds for the Central Universities (Grant No. GK200902025). |
Cite this article:
Mo Juan(莫娟), Li Yu-Ye(李玉叶), Wei Chun-Ling(魏春玲), Yang Ming-Hao(杨明浩), Gu Hua-Guang(古华光), Qu Shi-Xian(屈世显), and Ren Wei(任维) Interpreting a period-adding bifurcation scenario in neural bursting patterns using border-collision bifurcation in a discontinuous map of a slow control variable 2010 Chin. Phys. B 19 080513
|
[1] |
Rachwalska M and Kawczy'nski A L 2001 J. Phys. Chem. A 105 7885
|
[2] |
Izhikevich E M 2000 Int. J. Bifur. Chaos 10 1171
|
[3] |
Yang M H, An S C, Gu H G, Liu Z Q and Ren W 2006 NeuroReport 17 995
|
[4] |
Braun H A, Wissing H, Schddotafer K and Hirsch M C 1994 em Nature 367 270
|
[5] |
Chay T R 1985 Physica D 16 233
|
[6] |
Fan Y S and Chay T R 1994 Biol. Cybern. 171 417
|
[7] |
Chay T R and Fan Y S 1995 Int. J. Bifur. Chaos 5 595
|
[8] |
Hindmarsh J L and Rose R M 1984 Proc. R. Soc. London Ser. B 221 87
|
[9] |
Holden A V and Fan Y S 1992 Chaos, Solitons and Fractals 2 583
|
[10] |
Fan Y S and Holden A V 1993 Chaos, Solitons and Fractals 3 439
|
[11] |
Terman D 1992 J. Nonlinear Sci. 2 135
|
[12] |
Wu S G and He D R 2001 Commun. Theor. Phys. 35 275
|
[13] |
Wu S G and He D R 2001 J. Phys. Soc. Jpn. 70 69
|
[14] |
Rinzel J and Lee Y S 1987 J. Math. Biol. 25 653
|
[15] |
Del Negro C A, Hsiao C F, Chandler S H and Garfinkel A 1998 em Biophys. J. 75 174
|
[16] |
Shilnikov A and Cymbalyuk G 2005 Phys. Rev. Lett. 94 048101
|
[17] |
Channell P, Cymbalyuk G and Shilnikov A 2007 Phys. Rev. Lett. 98 134101
|
[18] |
Ren W, Hu S J, Zhang B J, Wang F Z, Gong Y F and Xu J X 1997 em Int. J. Bifur. Chaos 7 1867
|
[19] |
Xu J X, Gong Y F and Ren W 1997 Physica D 100 212
|
[20] |
Li L, Gu H G, Yang M H, Liu Z Q and Ren W 2004 Int. J. Bifur. Chaos 14 1813
|
[21] |
Gu H G, Yang M H, Li L, Liu Z Q and Ren W 2003 Phys. Lett. A 319 89
|
[22] |
Gu H G, Yang M H, Li L, Ren W and Lu Q S 2007 Dyn. Contin. Discr. Impul. Syst. (Series B: Applications & Algorithms) 14 6
|
[23] |
Yang M H, Gu H G, Li L, Liu Z Q and Ren W 2003 NeuroReport 14 2153
|
[24] |
Ren W, Gu H G, Jian Z, Lu Q S and Yang M H 2001 NeuroReport 12 2121
|
[25] |
Gu H G, Ren W, Lu Q S, Wu S G, Yang M H and Chen W J 2001 Phys. Lett. A 285 63
|
[26] |
Yang M H, Li L, Liu Z Q, Liu H J, Xu Y L, Gu H G and Ren W 2009 Int. J. Bifur. Chaos 19 453
|
[27] |
Wu X B, Mo J, Yang M H, Zheng Q H, Gu H G and Ren W 2008 Chin. Phys. Lett. 25 2799
|
[28] |
Zheng Q H, Liu Z Q, Yang M H, Wu X B, Gu H G and Ren W 2009 em Phys. Lett. A 373 540
|
[29] |
Yang Z Q, Lu Q S and Li L 2006 Chaos, Solitons and Fractals 27 689
|
[30] |
Duan L X, Lu Q S and Wang Q Y 2008 Neurocomputing 72 341
|
[31] |
Coombes S and Osbaldestin A H 2000 Phys. Rev. E 62 4057
|
[32] |
Medvedev G S 2005 Physica D 202 37
|
[33] |
Douglass J K, Wilkens L, Pantazelou E and Moss F 1993 Nature 365 337
|
[34] |
Medvedev G S 2006 Phys. Rev. Lett. 97 048102
|
[35] |
Hitczenko P and Medvedev G S 2009 SIAM J. Appl. Math. 69 1359
|
[36] |
Bressloff P C and Stark J 1990 Phys. Lett. A 150 187
|
[37] |
Christiansen B, He D R, Habip S, Bauer M and Krueger U 1992 Phys. Rev. A 45 8450
|
[38] |
Nusse H E and Yorke J A 1992 Physica D 57 39
|
[39] |
Nusse H E, Ott E and Yorke J A 1994 Phys. Rev. E 49 1073
|
[40] |
Nusse H E and Yorke J A 1995 Int. J. Bifur. Chaos 5 189
|
[41] |
Qu S X, Wu S G and He D R 1997 Phys. Lett. A 231 152
|
[42] |
Qu S X, Wu S G and He D R 1998 Phys. Rev. E 57 402
|
[43] |
Bernardo M Di, Feigin M I, Hogan S J and Homer M E 1999 Chaos, Solitons and Fractals 10 1881
|
[44] |
Jain P and Banerjee S 2003 Int. J. Bifur. Chaos 13 3341
|
[45] |
Sharkovsky A N and Chua L Q 1993 IEEE Trans. Circuit Sys. I 40 722
|
[46] |
Halse C, Homer M and Bernardo M Di 2003 Chaos, Solitons and Fractals 18 953
|
[47] |
Belykh V N and Belykh I V 2000 Eur. Phys. J. E 3 205
|
[48] |
Koll'ar L E, St'ep'an G and Turi J 2004 Int. J. Bifur. Chaos 14 2341
|
[49] |
Avrutin V and Schanz M 2004 Phys. Rev. E 70 026222
|
[50] |
Avrutin V and Schanz M 2005 Int. J. Bifur. Chaos 15 1267
|
[51] |
Hogan S J, Higham L and Griffin T C L 2007 Proc. R. Soc. A 463 49
|
[52] |
Dutta P S, Routroy B, Banerjee S and Alam S S 2008 Nonlinear. Dyn. 53 369
|
[53] |
Avrutin V, Schanz M and Banerjee S 2007 Phys. Rev. E 75 066205
|
[54] |
Mannella R and Palleschi V 1989 Phys. Rev. A 40 3381
|
[55] |
Ni F, Xu W, Fang T and Yue X L 2010 Chin. Phys. B 19 010510
|
[56] |
Feng J Q, Xu W and Niu Y J 2010 Acta Phys. Sin. 59 157 (in Chinese)
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|