Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(8): 080514    DOI: 10.1088/1674-1056/19/8/080514
GENERAL Prev   Next  

A traffic flow lattice model considering relative current influence and its numerical simulation

Sun Di-Hua(孙棣华)a), Tian Chuan(田川)a)†, and Liu Wei-Ning(刘卫宁)b)
a College of Automation, Chongqing University, Chongqing 400030, China; b College of Computer, Chongqing University, Chongqing 400030, China
Abstract  Based on Xue's lattice model, an extended lattice model is proposed by considering the relative current information about next-nearest-neighbour sites ahead. The linear stability condition of the presented model is obtained by employing the linear stability theory. The density wave is investigated analytically with the perturbation method. The results show that the occurrence of traffic jamming transitions can be described by the kink–antikink solution of the modified Korteweg-de Vries (mKdV) equation. The simulation results are in good agreement with the analytical results, showing that the stability of traffic flow can be enhanced when the relative current of next-nearest-neighbour sites ahead is considered.
Keywords:  traffic flow      relative current      lattice model      numerical simulation  
Received:  11 December 2009      Revised:  06 January 2010      Accepted manuscript online: 
PACS:  05.50.+q (Lattice theory and statistics)  
  02.60.Cb (Numerical simulation; solution of equations)  
  84.40.Xb (Telemetry: remote control, remote sensing; radar)  
Fund: Project supported by the National High Technology Research and Development Program of China (Grant No. 511-0910-1031).

Cite this article: 

Sun Di-Hua(孙棣华), Tian Chuan(田川), and Liu Wei-Ning(刘卫宁) A traffic flow lattice model considering relative current influence and its numerical simulation 2010 Chin. Phys. B 19 080514

[1] Peng G H, Sun D H and He H P 2008 Acta Phys. Sin. 57 7541 (in Chinese)
[2] Xue Y, Dong L Y, Yuan Y W and Dai S Q 2002 Acta Phys. Sin. 51 492 (in Chinese)
[3] Mo Y L, He H D, Xue Y, Shi W and Lu W Z 2008 Chin. Phys. B 17 4446
[4] Chen X, Gao Z Y, Zhao X M and Jia B 2007 Acta Phys. Sin. 56 2024 (in Chinese)
[5] Li X L, Kuang H, Song T, Dai S Q and Li Z P 2008 Chin. Phys. B 17 2366
[6] Ge H X, Zhu H B and Dai S Q 2005 Acta Phys. Sin. 54 4621 (in Chinese)
[7] Tang T Q, Huang H J, Wong S C and Jiang R 2009 Chin. Phys. B 18 975
[8] Peng G H, Sun D H and He H P 2009 Chin. Phys. B 18 468
[9] Ge H X, Dai S Q and Dong L Y 2008 Chin. Phys. B 17 23
[10] Sun D H and Peng G H 2009 Chin. Phys. B 18 3724
[11] Treiber M, Hennecke A and Helbing D 1999 Phys. Rev. E 59 239
[12] Tian J F, Jia B, Li X G and Gao Z Y 2010 Chin. Phys. B 19 010511
[13] Sheng P, Zhao S L, Wang J F, Tang P and Gao L 2009 Chin. Phys. B 18 3347
[14] Peng G H and Sun D H 2009 Chin. Phys. B 18 5420
[15] Peng L J and Kang R 2009 Acta Phys. Sin. 58 830 (in Chinese)
[16] Kang R, Peng L J and Yang K 2009 Acta Phys. Sin. 58 451 (in Chinese)
[17] Zhao S G 2009 Acta Phys. Sin. 58 7497 (in Chinese)
[18] Kurtze D A and Hong D C 1995 Phys. Rev. E 52 218
[19] Komatsu T and Sasa S 1995 Phys. Rev. E 52 5574
[20] Nagayani T 1998 Physica A 261 599
[21] Xue Y 2004 Acta Phys. Sin. 53 25 (in Chinese)
[22] Helbing D and Huberman B A 1998 Nature 396 738
[23] Bando M, Hasebe K, Nakayama A, Shibata A and Sugiyama Y 1995 Phys. Rev. E 51 1035
[24] Nagitani T and Nakanishi K 1998 Physica A 31 5431
[25] Ge H X, Cheng R J and Dai S Q 2005 Physica A 357 466
[1] Quantitative measurement of the charge carrier concentration using dielectric force microscopy
Junqi Lai(赖君奇), Bowen Chen(陈博文), Zhiwei Xing(邢志伟), Xuefei Li(李雪飞), Shulong Lu(陆书龙), Qi Chen(陈琪), and Liwei Chen(陈立桅). Chin. Phys. B, 2023, 32(3): 037202.
[2] Micro-mechanism study of the effect of Cd-free buffer layers ZnXO (X=Mg/Sn) on the performance of flexible Cu2ZnSn(S, Se)4 solar cell
Caixia Zhang(张彩霞), Yaling Li(李雅玲), Beibei Lin(林蓓蓓), Jianlong Tang(唐建龙), Quanzhen Sun(孙全震), Weihao Xie(谢暐昊), Hui Deng(邓辉), Qiao Zheng(郑巧), and Shuying Cheng(程树英). Chin. Phys. B, 2023, 32(2): 028801.
[3] A novel lattice model integrating the cooperative deviation of density and optimal flux under V2X environment
Guang-Han Peng(彭光含), Chun-Li Luo(罗春莉), Hong-Zhuan Zhao(赵红专), and Hui-Li Tan(谭惠丽). Chin. Phys. B, 2023, 32(1): 018902.
[4] Traffic flow of connected and automated vehicles at lane drop on two-lane highway: An optimization-based control algorithm versus a heuristic rules-based algorithm
Huaqing Liu(刘华清), Rui Jiang(姜锐), Junfang Tian(田钧方), and Kaixuan Zhu(朱凯旋). Chin. Phys. B, 2023, 32(1): 014501.
[5] Theoretical and experimental studies on high-power laser-induced thermal blooming effect in chamber with different gases
Xiangyizheng Wu(吴祥议政), Jian Xu(徐健), Keling Gong(龚柯菱), Chongfeng Shao(邵崇峰), Yang Kou(寇洋), Yuxuan Zhang(张宇轩), Yong Bo(薄勇), and Qinjun Peng(彭钦军). Chin. Phys. B, 2022, 31(8): 086105.
[6] Spatio-spectral dynamics of soliton pulsation with breathing behavior in the anomalous dispersion fiber laser
Ying Han(韩颖), Bo Gao(高博), Jiayu Huo(霍佳雨), Chunyang Ma(马春阳), Ge Wu(吴戈),Yingying Li(李莹莹), Bingkun Chen(陈炳焜), Yubin Guo(郭玉彬), and Lie Liu(刘列). Chin. Phys. B, 2022, 31(7): 074208.
[7] Data-driven parity-time-symmetric vector rogue wave solutions of multi-component nonlinear Schrödinger equation
Li-Jun Chang(常莉君), Yi-Fan Mo(莫一凡), Li-Ming Ling(凌黎明), and De-Lu Zeng(曾德炉). Chin. Phys. B, 2022, 31(6): 060201.
[8] A novel car-following model by sharing cooperative information transmission delayed effect under V2X environment and its additional energy consumption
Guang-Han Peng(彭光含), Te-Ti Jia(贾特提), Hua Kuang(邝华), Hui-Li Tan(谭惠丽), and Tao Chen(陈陶). Chin. Phys. B, 2022, 31(5): 058901.
[9] Traffic flow prediction based on BILSTM model and data denoising scheme
Zhong-Yu Li(李中昱), Hong-Xia Ge(葛红霞), and Rong-Jun Cheng(程荣军). Chin. Phys. B, 2022, 31(4): 040502.
[10] Modeling the heterogeneous traffic flow considering the effect of self-stabilizing and autonomous vehicles
Yuan Gong(公元) and Wen-Xing Zhu(朱文兴). Chin. Phys. B, 2022, 31(2): 024502.
[11] Characteristics of secondary electron emission from few layer graphene on silicon (111) surface
Guo-Bao Feng(封国宝), Yun Li(李韵), Xiao-Jun Li(李小军), Gui-Bai Xie(谢贵柏), and Lu Liu(刘璐). Chin. Phys. B, 2022, 31(10): 107901.
[12] Effects of Prandtl number in two-dimensional turbulent convection
Jian-Chao He(何建超), Ming-Wei Fang(方明卫), Zhen-Yuan Gao(高振源), Shi-Di Huang(黄仕迪), and Yun Bao(包芸). Chin. Phys. B, 2021, 30(9): 094701.
[13] Evolution of melt convection in a liquid metal driven by a pulsed electric current
Yanyi Xu(徐燕祎), Yunhu Zhang(张云虎), Tianqing Zheng(郑天晴), Yongyong Gong(龚永勇), Changjiang Song(宋长江), Hongxing Zheng(郑红星), and Qijie Zhai(翟启杰). Chin. Phys. B, 2021, 30(8): 084701.
[14] Effect of pressure and space between electrodes on the deposition of SiNxHy films in a capacitively coupled plasma reactor
Meryem Grari, CifAllah Zoheir, Yasser Yousfi, and Abdelhak Benbrik. Chin. Phys. B, 2021, 30(5): 055205.
[15] Numerical simulation of super-continuum laser propagation in turbulent atmosphere
Ya-Qian Li(李雅倩), Wen-Yue Zhu (朱文越), and Xian-Mei Qian(钱仙妹). Chin. Phys. B, 2021, 30(3): 034201.
No Suggested Reading articles found!