Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(3): 030504    DOI: 10.1088/1674-1056/ab7441
GENERAL Prev   Next  

Dynamical response of a neuron-astrocyte coupling system under electromagnetic induction and external stimulation

Zhi-Xuan Yuan(袁治轩), Pei-Hua Feng(冯沛华), Meng-Meng Du(独盟盟), Ying Wu(吴莹)
State Key Laboratory for Strength and Vibration of Mechanical Structures, Shaanxi Engineering Laboratory for Vibration Control of Aerospace Structures, School of Aerospace Engineering, Xi'an Jiaotong University, Xi'an 710049, China
Abstract  Previous studies have observed that electromagnetic induction can seriously affect the electrophysiological activity of the nervous system. Considering the role of astrocytes in regulating neural firing, we studied a simple neuron-astrocyte coupled system under electromagnetic induction in response to different types of external stimulation. Both the duration and intensity of the external stimulus can induce different modes of electrical activity in this system, and thus the neuronal firing patterns can be subtly controlled. When the external stimulation ceases, the neuron will continue to fire for a long time and then reset to its resting state. In this study, “delay” is defined as the delayed time from the firing state to the resting state, and it is highly sensitive to changes in the duration or intensity of the external stimulus. Meanwhile, the self-similarity embodied in the aforementioned sensitivity can be quantified by fractal dimension. Moreover, a hysteresis loop of calcium activity in the astrocyte is observed in the specific interval of the external stimulus when the stimulus duration is extended to infinity, since astrocytic calcium or neuron electrical activity in the resting state or during periodic oscillation depends on the initial state. Finally, the regulating effect of electromagnetic induction in this system is considered. It is clarified that the occurrence of “delay” depends purely on the existence of electromagnetic induction. This model can reveal the dynamic characteristics of the neuron-astrocyte coupling system with magnetic induction under external stimulation. These results can provide some insights into the effects of electromagnetic induction and stimulation on neuronal activity.
Keywords:  delay      fractal      bistability      electromagnetic induction  
Received:  23 September 2019      Revised:  05 January 2020      Accepted manuscript online: 
PACS:  05.45.-a (Nonlinear dynamics and chaos)  
  64.70.qj (Dynamics and criticality)  
  87.19.L- (Neuroscience)  
  87.19.lk (Glia)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11772242) and China Postdoctoral Science Foundation (Grant No. 2018M631140).
Corresponding Authors:  Ying Wu     E-mail:  wying36@xjtu.edu.cn

Cite this article: 

Zhi-Xuan Yuan(袁治轩), Pei-Hua Feng(冯沛华), Meng-Meng Du(独盟盟), Ying Wu(吴莹) Dynamical response of a neuron-astrocyte coupling system under electromagnetic induction and external stimulation 2020 Chin. Phys. B 29 030504

[1] Hodgkin A L and Huxley A F 1952 J. Physiol. 117 500
[2] Morris C and Lecar H 1981 Biophys. J. 35 193
[3] Fitzhugh R 1960 J. Gen. Physiol. 43 867
[4] Hindmarsh J L and Rose R M 1982 Nature 296 162
[5] Zhao Z G and Gu H G 2017 Sci. Rep. 7 1
[6] Bo L, Liu S Q and Liu X L, et al. 2016 Int. J. Bifur. Chaos 26 1650090
[7] Gu H G, Zhao Z G and Bing J, et al. 2015 Plos One 10 e0121028
[8] Wang H X, Wang Q Y and Zheng Y H 2014 Sci. China: Technol. Sci. 57 872
[9] Zhao Z G, Bing J and Gu H G 2016 Nonlinear Dyn. 86 1549
[10] Liu X L and Liu S Q 2012 Nonlinear Dyn. 67 847
[11] Gu H G, Pan B B and Li Y Y 2015 Nonlinear Dyn. 82 1191
[12] Ma J, Wu F Q and Alsaedi A, et al. 2018 Nonlinear Dyn. 93 2057
[13] Gu H G and Zhao Z G 2015 Plos One 10 e0138593-
[14] Ma J, Zhang G and Hayat T, et al. 2019 Nonlinear Dyn. 95 2019
[15] Wang R B, Wang Z Y and Zhu Z Y 2018 Nonlinear Dyn. 92 973
[16] Wang R B, Ichiro T and Zhang Z K 2015 Int. J. Neural Syst. 25 1450037
[17] Zhu F Y, Wang R B and Pan X C 2019 Cognitive Neurodynamics 13 75
[18] Wang Z Y and Wang R B 2014 Frontiers in Computational Neuroscience 8 14
[19] Zhu Z Y, Wang R B and Zhu F Y 2018 Front. Neurosci. 12 122
[20] Wang Y H, Wang R B and Zhu Y T 2017 Cognitive Neurodynamics 11 99
[21] Wang Y H, Xu X Y and Wang R B 2018 Front. Neurosci. 12 264
[22] Porter J T and Mccarthy K D 1996 J. Neurosci. 16 5073
[23] Parpura V and Haydon P G 2000 Proc. Natl. Acad. Sci. USA 97 8629
[24] Arcuino G, Lin J H and Takano T, et al. 2002 Proc. Natl. Acad. Sci. USA 99 9840
[25] Postnov D E, Ryazanova L S and Brazhe N A, et al. 2008 J. Biol. Phys. 34 441
[26] Li Y X and Rinzel J 1994 J. Theor. Biol. 166 461
[27] Nadkarni S and Jung P 2003 Phys. Rev. Lett. 91 268101
[28] Li J J, Xie Y and Yu Y G, et al. 2017 Sci. China: Technol. Sci. 60 43
[29] Erkan Y, Sarac Z and Yilmaz E 2019 Nonlinear Dyn. 95 3411
[30] Kanakov O, Gordleeva S and Ermolaeva A, et al. 2019 Phys. Rev. E 99 012418
[31] John F B, Matthew J T and Jennifer M S, et al. 2016 Proc. Natl. Acad. Sci. 113 14133
[32] Alex M A 2002 Kybernetes (Emerald Group Publishing Limited) pp. 140-142
[33] Ma J and Tang J 2017 Nonlinear Dyn. 89 1569
[34] Lv M, Wang C N and Ren G D, et al. 2016 Nonlinear Dyn. 85 1479
[35] Zhang X H and Liu S Q 2018 Chin. Phys. B 27 040501
[36] Chua L 1971 IEEE Trans. Circuit Theory 18 507
[37] Wang R B, Zhang Z K and Jiao X F 2006 Appl. Phys. Lett. 89 1102
[38] Wang Z Y, Wang R B and Fang R Y 2015 Cognitive Neurodynamics 9 129
[39] Wang R B and Zhu Y T 2016 Cognitive Neurodynamics 10 1
[40] Feng P H, Wu Y and Zhang J Z 2017 Frontiers in Computational Neuroscience 11 94
[41] Liu Y, Ma J and Xu Y, et al. 2019 Int. J. Bifur. Chaos 29 1950156
[42] Wu F Q, Gu H G and Li Y Y 2019 Commun. Nonlinear Sci. Numer. Simul. 79
[43] Muramatsu S, Toda M and Nishikawa J, et al. 2019 Brain Res. 1721
[44] Katta S, Sanzeni A and Das A, et al. 2019 J. Gen. Physiol. 151 1213
[45] Wang S S, Alousi A A and Thompson S H 1995 J. Gen. Physiol. 105 149
[46] Ma J and Tang J 2015 Sci. China: Technol. Sci. 58 2038
[47] Budyansky M, Uleysky M and Prants S 2002 Physica D-Nonlinear Phenomena 195 369
[48] Xue S S, Xue F and Ma Q R, et al. 2019 Pharmacol., Biochem. Behav. 184
[49] Zorzo C, Higarza S G and Mendez M, et al. 2019 Brain Res. Bull. 150 13
[50] Wang R, Feng P H and Fan Y C, et al. 2019 Int. J. Bifur. Chaos 29 1950005
[51] Wang Y Y and Wang R B 2018 Nonlinear Dyn. 91 319
[52] Kerrigan J F, Litt B and Fisher R S, et al. 2010 Epilepsia 45 346
[53] Steven C S and Clifford B S 1998 Epilepsia 39 677
[54] Dooley D M and Nisonson I 1981 Appl. Neurophysiol. 44 71
[1] Hopf bifurcation and phase synchronization in memristor-coupled Hindmarsh-Rose and FitzHugh-Nagumo neurons with two time delays
Zhan-Hong Guo(郭展宏), Zhi-Jun Li(李志军), Meng-Jiao Wang(王梦蛟), and Ming-Lin Ma(马铭磷). Chin. Phys. B, 2023, 32(3): 038701.
[2] Effect of autaptic delay signal on spike-timing precision of single neuron
Xuan Ma(马璇), Yaya Zhao(赵鸭鸭), Yafeng Wang(王亚峰), Yueling Chen(陈月玲), and Hengtong Wang(王恒通). Chin. Phys. B, 2023, 32(3): 038703.
[3] Multifractal analysis of the software evolution in software networks
Meili Liu(刘美丽), Xiaogang Qi(齐小刚), and Hao Pan(潘浩). Chin. Phys. B, 2022, 31(3): 030501.
[4] Inferring interactions of time-delayed dynamic networks by random state variable resetting
Changbao Deng(邓长宝), Weinuo Jiang(蒋未诺), and Shihong Wang(王世红). Chin. Phys. B, 2022, 31(3): 030502.
[5] Review on typical applications and computational optimizations based on semiclassical methods in strong-field physics
Xun-Qin Huo(火勋琴), Wei-Feng Yang(杨玮枫), Wen-Hui Dong(董文卉), Fa-Cheng Jin(金发成), Xi-Wang Liu(刘希望), Hong-Dan Zhang(张宏丹), and Xiao-Hong Song(宋晓红). Chin. Phys. B, 2022, 31(3): 033101.
[6] Bifurcation and dynamics in double-delayed Chua circuits with periodic perturbation
Wenjie Yang(杨文杰). Chin. Phys. B, 2022, 31(2): 020201.
[7] Invariable mobility edge in a quasiperiodic lattice
Tong Liu(刘通), Shujie Cheng(成书杰), Rui Zhang(张锐), Rongrong Ruan(阮榕榕), and Houxun Jiang(姜厚勋). Chin. Phys. B, 2022, 31(2): 027101.
[8] Finite-time Mittag—Leffler synchronization of fractional-order complex-valued memristive neural networks with time delay
Guan Wang(王冠), Zhixia Ding(丁芝侠), Sai Li(李赛), Le Yang(杨乐), and Rui Jiao(焦睿). Chin. Phys. B, 2022, 31(10): 100201.
[9] Dynamic modeling and aperiodically intermittent strategy for adaptive finite-time synchronization control of the multi-weighted complex transportation networks with multiple delays
Ning Li(李宁), Haiyi Sun(孙海义), Xin Jing(靖新), and Zhongtang Chen(陈仲堂). Chin. Phys. B, 2021, 30(9): 090507.
[10] Low-threshold bistable reflection assisted by oscillating wave interaction with Kerr nonlinear medium
Yingcong Zhang(张颖聪), Wenjuan Cai(蔡文娟), Xianping Wang(王贤平), Wen Yuan(袁文), Cheng Yin(殷澄), Jun Li(李俊), Haimei Luo(罗海梅), and Minghuang Sang(桑明煌). Chin. Phys. B, 2021, 30(8): 084203.
[11] Fractal sorting vector-based least significant bit chaotic permutation for image encryption
Yong-Jin Xian(咸永锦), Xing-Yuan Wang(王兴元), Ying-Qian Zhang(张盈谦), Xiao-Yu Wang(王晓雨), and Xiao-Hui Du(杜晓慧). Chin. Phys. B, 2021, 30(6): 060508.
[12] Delayed excitatory self-feedback-induced negative responses of complex neuronal bursting patterns
Ben Cao(曹奔), Huaguang Gu(古华光), and Yuye Li(李玉叶). Chin. Phys. B, 2021, 30(5): 050502.
[13] Effective suppression of beta oscillation in Parkinsonian state via a noisy direct delayed feedback control scheme
Hai-Tao Yu(于海涛), Zi-Han Meng(孟紫寒), Chen Liu(刘晨), Jiang Wang(王江), and Jing Liu(刘静). Chin. Phys. B, 2021, 30(3): 038703.
[14] Discontinuous event-trigger scheme for global stabilization of state-dependent switching neural networks with communication delay
Yingjie Fan(樊英杰), Zhen Wang(王震), Jianwei Xia(夏建伟), and Hao Shen(沈浩). Chin. Phys. B, 2021, 30(3): 030202.
[15] Flow separation control over an airfoil using continuous alternating current plasma actuator
Jian-Guo Zheng(郑建国). Chin. Phys. B, 2021, 30(3): 034702.
No Suggested Reading articles found!