Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(7): 077103    DOI: 10.1088/1674-1056/19/7/077103
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Electronic band transformation from indirect gap to direct gap in Si—H compound

Ding Jian-Ning(丁建宁)a)b)d)†, Wang Jun-Xiong(王君雄)b), Yuan Ning-Yi(袁宁一)a)b)d), Kan Biao(坎标)b), and Chen Xiao-Shuang(陈效双)c)
a Center for Low-Dimensional Materials, Micro-Nano Devices and System, Jiangsu Polytechnic University, Changzhou 213164, China; b Center for Micro/Nano Science and Technology, Jiangsu University, Zhenjiang 212013, China; c National Laboratory of Infrared Physics, Shanghai Institute for Technical Physics, Chinese Academy of Sciences, Shanghai 200083, China; d Key Laboratory of New Energy Source, Changzhou 213164, China
Abstract  The electronic band structures of periodic models for Si—H compounds are investigated by the density functional theory. Our results show that the Si—H compound changes from indirect-gap semiconductor to direct-gap semiconductor with the increase of H content. The density of states, the partial density of states and the atomic charge population are examined in detail to explore the origin of this phenomenon. It is found that the Si—Si bonds are affected by H atoms, which results in the electronic band transformation from indirect gap to direct gap. This is confirmed by the nearest neighbour semi-empirical tight-binding (TB) theory.
Keywords:  Si—H compounds      band structure      density functional theory      tight-binding calculation  
Accepted manuscript online: 
PACS:  71.20.Ps (Other inorganic compounds)  
  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
  71.15.Ap (Basis sets (LCAO, plane-wave, APW, etc.) and related methodology (scattering methods, ASA, linearized methods, etc.))  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 50775101), the New Century Excellent Talents (Grant No. NCET-04-0515), and the Jiangsu Provincial Science and Technology Supporting Project, China (Grant No. BE2008030), Qing Lan Project (2008-04), Jiangsu University Natural Science Foundation of China (Grant No. 07KJB430023).

Cite this article: 

Ding Jian-Ning(丁建宁), Wang Jun-Xiong(王君雄), Yuan Ning-Yi(袁宁一), Kan Biao(坎标), and Chen Xiao-Shuang(陈效双) Electronic band transformation from indirect gap to direct gap in Si—H compound 2010 Chin. Phys. B 19 077103

[1] Bustarret E, Marcenta C, Achatz P, Kacmarcik J, Lévy F, Huxley A, Ortéga L, Débarre D and Bohlmer J 2006 Nature 444 465
[2] Canham L T 1990 Appl. Phys. Lett. 57 1046
[3] Takagi H, Ogawa H, Yamazaki Y, Ishizaki A and Nakagiri T 1990 Appl. Phys. Lett. 56 2379
[4] Ying M J, Zhang P and Du X L 2009 Chin. Phys. B 18 275
[5] Liu Y Z and Luo C L 2004 Acta Phys. Sin. 53 592 (in Chinese)
[6] Green M A, Zhao J, Wang A, Reece P J and Gal M 2001 Nature 412 805
[7] Ng W L, Lourenco M A, Gwilliam R M, Ledain S, Shao G and Homewood K P 2001 Nature 410 192
[8] Hirschman K D, Tsybeskov L, Duttagupta S P and Fauchet P M 1996 Nature 384 338
[9] Almeida V R, Barrios C A, Panepucci R R and Lipson M 2004 Nature 431 1081
[10] Hong K H, Jongseob K, Lee S H and Shin J K 2008 Nano Letters 8 1335
[11] Boland J J 1990 Phys. Rev. Lett. 65 3325
[12] Oura K, Lifshits V G, Saranin A A, Zotov A V and Katayama M 1999 Surf. Sci. Rep. 35 1
[13] Derycke V, Soukiassian P G, Amy F, Chabal Y J, Angelo M D, Enriquez H B and Silly M G 2003 Nat. Mater. 2 253
[14] Amy F and Chabal Y J 2003 J. Chem. Phys. 119 6201
[15] Soukiassian P G and Enriquez H B 2004 J. Phys.: Condens. Matter 16 1611
[16] Segall M D, Lindan P J D, Probert M J, Pickard C J, Hasnip P J, Clark S J and Payne M C 2002 Phys. Condens. Matter 14 2717
[17] Perdew J P, Chevary J A, Vosko S H, Jackson K A, Pederson M R, Singh D J and Fiolhais C 1992 Phys. Rev. B 46 6671
[18] Vanderbilt D 1990 Phys. Rev. B 41 7892
[19] Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188
[20] Lee S, Oyafuso F, Allmen P V and Klimeck G 2004 Phys. Rev. B 69 045316
[21] Mulliken R S 1955 J. Chem. Phys. 23 1833
[22] Slater J C and Koster G F 1954 Phys. Rev. 94 1498
[23] Vogl P, Hjalmarson H P and Dow J D 1983 J. Phys. Chem. Solids. 44 365
[24] Boykin T B 1997 Phys. Rev. B 56 9613
[25] Boykin T B, Klimeck G and Oyafuso F 2004 Phys. Rev. B 69 115201
[26] Li Q M and Biswas R 1994 Phys. Rev. B 50 18090
[27] Kim E, Lee Y H and Lee J M 1994 J. Phys.: Condens. Matter. 6 9561
[28] Wang J, Rahman A, Ghosh A, Klimeck G and Lundstrom M 2005 Appl. Phys. Lett. 86 093113 endfootnotesize
[1] Predicting novel atomic structure of the lowest-energy FenP13-n(n=0-13) clusters: A new parameter for characterizing chemical stability
Yuanqi Jiang(蒋元祺), Ping Peng(彭平). Chin. Phys. B, 2023, 32(4): 047102.
[2] A theoretical study of fragmentation dynamics of water dimer by proton impact
Zhi-Ping Wang(王志萍), Xue-Fen Xu(许雪芬), Feng-Shou Zhang(张丰收), and Xu Wang(王旭). Chin. Phys. B, 2023, 32(3): 033401.
[3] Plasmonic hybridization properties in polyenes octatetraene molecules based on theoretical computation
Nan Gao(高楠), Guodong Zhu(朱国栋), Yingzhou Huang(黄映洲), and Yurui Fang(方蔚瑞). Chin. Phys. B, 2023, 32(3): 037102.
[4] Ferroelectricity induced by the absorption of water molecules on double helix SnIP
Dan Liu(刘聃), Ran Wei(魏冉), Lin Han(韩琳), Chen Zhu(朱琛), and Shuai Dong(董帅). Chin. Phys. B, 2023, 32(3): 037701.
[5] Effects of π-conjugation-substitution on ESIPT process for oxazoline-substituted hydroxyfluorenes
Di Wang(汪迪), Qiao Zhou(周悄), Qiang Wei(魏强), and Peng Song(宋朋). Chin. Phys. B, 2023, 32(2): 028201.
[6] Interface-induced topological phase and doping-modulated bandgap of two-dimensioanl graphene-like networks
Ningjing Yang(杨柠境), Hai Yang(杨海), and Guojun Jin(金国钧). Chin. Phys. B, 2023, 32(1): 017201.
[7] High-order harmonic generation of the cyclo[18]carbon molecule irradiated by circularly polarized laser pulse
Shu-Shan Zhou(周书山), Yu-Jun Yang(杨玉军), Yang Yang(杨扬), Ming-Yue Suo(索明月), Dong-Yuan Li(李东垣), Yue Qiao(乔月), Hai-Ying Yuan(袁海颖), Wen-Di Lan(蓝文迪), and Mu-Hong Hu(胡木宏). Chin. Phys. B, 2023, 32(1): 013201.
[8] First-principles study of a new BP2 two-dimensional material
Zhizheng Gu(顾志政), Shuang Yu(于爽), Zhirong Xu(徐知荣), Qi Wang(王琪), Tianxiang Duan(段天祥), Xinxin Wang(王鑫鑫), Shijie Liu(刘世杰), Hui Wang(王辉), and Hui Du(杜慧). Chin. Phys. B, 2022, 31(8): 086107.
[9] Adaptive semi-empirical model for non-contact atomic force microscopy
Xi Chen(陈曦), Jun-Kai Tong(童君开), and Zhi-Xin Hu(胡智鑫). Chin. Phys. B, 2022, 31(8): 088202.
[10] Collision site effect on the radiation dynamics of cytosine induced by proton
Xu Wang(王旭), Zhi-Ping Wang(王志萍), Feng-Shou Zhang(张丰收), and Chao-Yi Qian (钱超义). Chin. Phys. B, 2022, 31(6): 063401.
[11] Modeling and numerical simulation of electrical and optical characteristics of a quantum dot light-emitting diode based on the hopping mobility model: Influence of quantum dot concentration
Pezhman Sheykholeslami-Nasab, Mahdi Davoudi-Darareh, and Mohammad Hassan Yousefi. Chin. Phys. B, 2022, 31(6): 068504.
[12] First principles investigation on Li or Sn codoped hexagonal tungsten bronzes as the near-infrared shielding material
Bo-Shen Zhou(周博深), Hao-Ran Gao(高浩然), Yu-Chen Liu(刘雨辰), Zi-Mu Li(李子木),Yang-Yang Huang(黄阳阳), Fu-Chun Liu(刘福春), and Xiao-Chun Wang(王晓春). Chin. Phys. B, 2022, 31(5): 057804.
[13] Laser-induced fluorescence experimental spectroscopy and theoretical calculations of uranium monoxide
Xi-Lin Bai(白西林), Xue-Dong Zhang(张雪东), Fu-Qiang Zhang(张富强), and Timothy C Steimle. Chin. Phys. B, 2022, 31(5): 053301.
[14] Surface-induced orbital-selective band reconstruction in kagome superconductor CsV3Sb5
Linwei Huai(淮琳崴), Yang Luo(罗洋), Samuel M. L. Teicher, Brenden R. Ortiz, Kaize Wang(王铠泽),Shuting Peng(彭舒婷), Zhiyuan Wei(魏志远), Jianchang Shen(沈建昌), Bingqian Wang(王冰倩), Yu Miao(缪宇),Xiupeng Sun(孙秀鹏), Zhipeng Ou(欧志鹏), Stephen D. Wilson, and Junfeng He(何俊峰). Chin. Phys. B, 2022, 31(5): 057403.
[15] Tunable electronic properties of GaS-SnS2 heterostructure by strain and electric field
Da-Hua Ren(任达华), Qiang Li(李强), Kai Qian(钱楷), and Xing-Yi Tan(谭兴毅). Chin. Phys. B, 2022, 31(4): 047102.
No Suggested Reading articles found!