Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(7): 077201    DOI: 10.1088/1674-1056/19/7/077201
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Coexistence of magnetic and ferroelectric properties in Y0.1Co1.9MnO4

Liu Yi(刘毅)
College of Science, Guizhou University, Guiyang 550025, China
Abstract  The magnetic, conductivity, and dielectric properties have been investigated in single-phase polycrystalline Y0.1Co1.9MnO4. The temperature-dependent magnetisation reveals the ferromagnetic transition in sample at a low temperature (~186 K). Magnetisation as a function of field H (MH loop) indicated the weak ferromagnetism of the sample at room temperature. The constant ε and dielectric loss tgδ measurements represent a ferroelectric phase transition at a higher temperature (~650 K), while the conductivity shows an insulator—metallic transition. The ferroelectric hysterisis loops and capacitance—voltage measurements confirm the ferroelectric nature of the sample at room temperature. The observed ferromagnetism and ferroelectric nature in this material suggests a potential multiferroic application.
Keywords:  spinel oxide      dielectric      conductivity      magnetic  
Accepted manuscript online: 
PACS:  77.80.Bh  
  72.60.+g (Mixed conductivity and conductivity transitions)  
  75.60.Ej (Magnetization curves, hysteresis, Barkhausen and related effects)  
  71.30.+h (Metal-insulator transitions and other electronic transitions)  
  77.22.Gm (Dielectric loss and relaxation)  
  77.84.Bw (Elements, oxides, nitrides, borides, carbides, chalcogenides, etc.)  
Fund: Project supported by the Doctorial Start-up Fund of Guizhou University of China (Grant No. 2006/Z065020).

Cite this article: 

Liu Yi(刘毅) Coexistence of magnetic and ferroelectric properties in Y0.1Co1.9MnO4 2010 Chin. Phys. B 19 077201

[1] Schmid H 1994 Ferroelectrics 162 317
[2] Eerenstein W, Mathur N D and Scott J F 2006 Nature 442 759
[3] Kimura T, Goto T, Shintani H, Ishizaka K, Arima T and Tokura Y 2003 Nature 426 55
[4] Goto T, Kimura T, Lawes G, Ramirez A P and Tokura Y 2004 Phys. Rev. Lett. 92 257201
[5] Zhang Y, Deng C Y, Ma J, Lin Y H and Nan C W 2008 Chin. Phys. B 17 3910
[6] Feng H J and Liu F M 2009 Chin. Phys. B 18 2487
[7] Fiebig M 2005 J. Phys. D 38 R123
[8] Wang J, Neaton J B, Zheng H, Nagarajan V, Ogale S B, Liu B, Viehland D, Vaithyanathan V, Schlom DG, Waghmare U V, Spaldin N A, Rabe K M, Wuttig M and Ramesh R 2005 Science 299 1719
[9] Rajeevan N E, Pradyumnan P P, Kumar R, Shukla D K, Kumar S, Singh A K, Patnaik S, Arora S K and Shvets I V 2008 Appl. Phys. Lett. 92 102910
[10] Rajeevan N E, Kumar R, Shukla D K, Pradyumnan P P, Arora S K and Shvets I V 2009 Mater. Sci. Eng. B 163 48
[11] Massaroti V, Capsoni D, Bini M and Chiodelli G 1997 J. Solid State Chem. 131 94
[12] Seshadri R and Hill N A 2001 Chem. Mater. 13 2892
[13] Cho D Y, Kim J Y, Park B G, Rho K J, Park J H, Noh H J, Kim B J, Oh S J, Park H M, Ahn J S, Ishibashi H, Cheong S W, Lee J H, Murugavel P, Noh T W, Tanaka A and Jo T 2007 Phys. Rev. Lett. 98 217601
[14] van Aken B B, Palstra T T M, Filipetti A and Spaldin N A 2004 Nat. Mater. 3 164 endfootnotesize
[1] Nonreciprocal wide-angle bidirectional absorber based on one-dimensional magnetized gyromagnetic photonic crystals
You-Ming Liu(刘又铭), Yuan-Kun Shi(史源坤), Ban-Fei Wan(万宝飞), Dan Zhang(张丹), and Hai-Feng Zhang(章海锋). Chin. Phys. B, 2023, 32(4): 044203.
[2] Light manipulation by dual channel storage in ultra-cold Rydberg medium
Xue-Dong Tian(田雪冬), Zi-Jiao Jing(景梓骄), Feng-Zhen Lv(吕凤珍), Qian-Qian Bao(鲍倩倩), and Yi-Mou Liu(刘一谋). Chin. Phys. B, 2023, 32(4): 044205.
[3] Micromagnetic study of magnetization reversal in inhomogeneous permanent magnets
Zhi Yang(杨质), Yuanyuan Chen(陈源源), Weiqiang Liu(刘卫强), Yuqing Li(李玉卿), Liying Cong(丛利颖), Qiong Wu(吴琼), Hongguo Zhang(张红国), Qingmei Lu(路清梅), Dongtao Zhang(张东涛), and Ming Yue(岳明). Chin. Phys. B, 2023, 32(4): 047504.
[4] Enhanced topological superconductivity in an asymmetrical planar Josephson junction
Erhu Zhang(张二虎) and Yu Zhang(张钰). Chin. Phys. B, 2023, 32(4): 040307.
[5] Prediction of lattice thermal conductivity with two-stage interpretable machine learning
Jinlong Hu(胡锦龙), Yuting Zuo(左钰婷), Yuzhou Hao(郝昱州), Guoyu Shu(舒国钰), Yang Wang(王洋), Minxuan Feng(冯敏轩), Xuejie Li(李雪洁), Xiaoying Wang(王晓莹), Jun Sun(孙军), Xiangdong Ding(丁向东), Zhibin Gao(高志斌), Guimei Zhu(朱桂妹), Baowen Li(李保文). Chin. Phys. B, 2023, 32(4): 046301.
[6] Effects of phonon bandgap on phonon-phonon scattering in ultrahigh thermal conductivity θ-phase TaN
Chao Wu(吴超), Chenhan Liu(刘晨晗). Chin. Phys. B, 2023, 32(4): 046502.
[7] Modeling of thermal conductivity for disordered carbon nanotube networks
Hao Yin(殷浩), Zhiguo Liu(刘治国), and Juekuan Yang(杨决宽). Chin. Phys. B, 2023, 32(4): 044401.
[8] Magneto-volume effect in FenTi13-n clusters during thermal expansion
Jian Huang(黄建), Yanyan Jiang(蒋妍彦), Zhichao Li(李志超), Di Zhang(张迪), Junping Qian(钱俊平), and Hui Li(李辉). Chin. Phys. B, 2023, 32(4): 046501.
[9] Application of the body of revolution finite-element method in a re-entrant cavity for fast and accurate dielectric parameter measurements
Tianqi Feng(冯天琦), Chengyong Yu(余承勇), En Li(李恩), and Yu Shi(石玉). Chin. Phys. B, 2023, 32(3): 030101.
[10] Quantum control of ultrafast magnetic field in H32+ molecules by tricircular polarized laser pulses
Qing-Yun Xu(徐清芸), Yong-Lin He(何永林), Zhi-Jie Yang(杨志杰), Zhi-Xian Lei(雷志仙),Shu-Juan Yan(闫淑娟), Xue-Shen Liu(刘学深), and Jing Guo(郭静). Chin. Phys. B, 2023, 32(3): 033202.
[11] Quantitative measurement of the charge carrier concentration using dielectric force microscopy
Junqi Lai(赖君奇), Bowen Chen(陈博文), Zhiwei Xing(邢志伟), Xuefei Li(李雪飞), Shulong Lu(陆书龙), Qi Chen(陈琪), and Liwei Chen(陈立桅). Chin. Phys. B, 2023, 32(3): 037202.
[12] Superconductivity in epitaxially grown LaVO3/KTaO3(111) heterostructures
Yuan Liu(刘源), Zhongran Liu(刘中然), Meng Zhang(张蒙), Yanqiu Sun(孙艳秋), He Tian(田鹤), and Yanwu Xie(谢燕武). Chin. Phys. B, 2023, 32(3): 037305.
[13] Wideband frequency-dependent dielectric properties of rat tissues exposed to low-intensity focused ultrasound in the microwave frequency range
Xue Wang(王雪), Shi-Xie Jiang, Lin Huang(黄林), Zi-Hui Chi(迟子惠), Dan Wu(吴丹), and Hua-Bei Jiang. Chin. Phys. B, 2023, 32(3): 034305.
[14] Li2NiSe2: A new-type intrinsic two-dimensional ferromagnetic semiconductor above 200 K
Li-Man Xiao(肖丽蔓), Huan-Cheng Yang(杨焕成), and Zhong-Yi Lu(卢仲毅). Chin. Phys. B, 2023, 32(3): 037501.
[15] Structural evolution-enabled BiFeO3 modulated by strontium doping with enhanced dielectric, optical and superparamagneticproperties by a modified sol-gel method
Sharon V S, Veena Gopalan E, and Malini K A. Chin. Phys. B, 2023, 32(3): 037504.
No Suggested Reading articles found!