Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(5): 057102    DOI: 10.1088/1674-1056/19/5/057102
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Molecular dynamics simulation of collective behaviour of Xe in UO2

Tian Xiao-Feng(田晓峰)a), Long Chong-Sheng(龙冲生)b), Zhu Zheng-He(朱正和)a), and Gao Tao(高涛) a)†
a Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610065, China; b The National Key Laboratory of Nuclear Fuel and Materials, Nuclear Power Institute of China, Chengdu 610041, China
Abstract  This paper performs atomic simulations of the nucleation and growth of Xe bubble in UO$_{2}$ at 1600 K. The bubble growth was simulated up to the bubble containing 50 Xe atoms. The Xe atoms were added directly to the bubble one by one, followed by a relaxation of the system for several picoseconds. The simulations estimated the bubble pressure and radius at different Xe concentrations. The results indicate that the bubble pressure drops with the increasing Xe/U and bubble size at low Xe concentration, while the pressure will increase with the Xe/U ratio at high Xe concentration. The swelling of the system associated with the bubble growth was also obtained. Finally, the recovery of the damaged structure was investigated.
Keywords:  uranium dioxide      molecular dynamics      bubble growth      swelling  
Received:  10 June 2009      Revised:  30 July 2009      Accepted manuscript online: 
PACS:  64.60.Q- (Nucleation)  
  61.72.Qq (Microscopic defects (voids, inclusions, etc.))  
  61.72.J- (Point defects and defect clusters)  
  28.41.Ak (Theory, design, and computerized simulation)  
  61.66.Fn (Inorganic compounds)  

Cite this article: 

Tian Xiao-Feng(田晓峰), Long Chong-Sheng(龙冲生), Zhu Zheng-He(朱正和), and Gao Tao(高涛) Molecular dynamics simulation of collective behaviour of Xe in UO2 2010 Chin. Phys. B 19 057102

[1] Abramowski M, Grimes R W and Owens S 1999 J. Nucl. Mater. 275 12
[2] Nicoll S, Matzke H and Catlow C R A 1995 J. Nucl. Mater. 226 51
[3] Kashibe S and Une K 1997 J. Nucl. Mater. 247 138
[4] Xue J M and Imanishi N 2002 Chin. Phys. 11 245
[5] Li X, Hu Y Z, Wang H and Yang D 2006 Chin. Phys. 15 818
[6] Morelon N D, Ghaleb D, Delaye J M and Brutzel L V 2003 Phil. Mag. 83 1533
[7] Sindzingre P and Gillan J M 1988 J. Phys. C: Solid State Phys. 21 4017
[8] Karakaidis T and Lindan P J D 1994 J. Phys.: Condens. Matter 6 2965
[9] Ewald P P 1921 Ann. Phys. 64 253
[10] Jackson R A, Murray A D, Harding J H and Catlow C R 1986 Phil. Mag. A 53 27
[11] Schwen D, Huang M, Bellon P and Averback R S 2009 J. Nucl. Mater. 392 35
[12] Geng H Y, Chen Y, Kaneta Y and Kinoshita M 2008 J. Alloys Compd. 457 465
[13] Jackson R A and Catlow C R A 1985 J. Nucl. Mater. 127 161
[14] Ross M and Mcmahan A K 1980 Phys. Rev. B 21 1658
[15] Oh J Y, Koo Y H, Cheon J S, Lee B H and Sohn D S 2008 J. Nucl. Mater. 372 89
[16] Plimpton S J 1995 J. Comp. Phys. 117 1
[17] Hoover 1985 Phys. Rev. A 31 1695
[18] Hoover 1985 Phys. Rev. A 34 2499
[19] Melchionna, Ciccotti and Holian 1993 Molecular Physics 78 533
[20] Yun Y, Kim H, Kim H and Park K 2008 J. Nucl. Mater. 378 40
[21] Parfitt D C and Grimes R W 2009 J. Nucl. Mater. 392 28
[22] Sun T, Long X, Wang J and Hou Q 2008 Chin. Phys. Lett. 25 1784
[23] Parfitt D C and Grimes R W 2008 J. Nucl. Mater. 381 216
[24] Wolfer W G 1989 Phil. Mag. A 59 87
[25] Nogita N and Une K 1998 Nucl. Instrum. and Meth. B 141 481
[26] Kaplun A B and Meshalkin A B 2003 Thermophys. Prop. Mater. 41 373
[27] Ronchi C 1981 J. Nucl. Mater. 96 314
[1] Molecular dynamics study of interactions between edge dislocation and irradiation-induced defects in Fe–10Ni–20Cr alloy
Tao-Wen Xiong(熊涛文), Xiao-Ping Chen(陈小平), Ye-Ping Lin(林也平), Xin-Fu He(贺新福), Wen Yang(杨文), Wang-Yu Hu(胡望宇), Fei Gao(高飞), and Hui-Qiu Deng(邓辉球). Chin. Phys. B, 2023, 32(2): 020206.
[2] Formation of nanobubbles generated by hydrate decomposition: A molecular dynamics study
Zilin Wang(王梓霖), Liang Yang(杨亮), Changsheng Liu(刘长生), and Shiwei Lin(林仕伟). Chin. Phys. B, 2023, 32(2): 023101.
[3] Prediction of flexoelectricity in BaTiO3 using molecular dynamics simulations
Long Zhou(周龙), Xu-Long Zhang(张旭龙), Yu-Ying Cao(曹玉莹), Fu Zheng(郑富), Hua Gao(高华), Hong-Fei Liu(刘红飞), and Zhi Ma(马治). Chin. Phys. B, 2023, 32(1): 017701.
[4] Adsorption dynamics of double-stranded DNA on a graphene oxide surface with both large unoxidized and oxidized regions
Mengjiao Wu(吴梦娇), Huishu Ma(马慧姝), Haiping Fang(方海平), Li Yang(阳丽), and Xiaoling Lei(雷晓玲). Chin. Phys. B, 2023, 32(1): 018701.
[5] Effect of spatial heterogeneity on level of rejuvenation in Ni80P20 metallic glass
Tzu-Chia Chen, Mahyuddin KM Nasution, Abdullah Hasan Jabbar, Sarah Jawad Shoja, Waluyo Adi Siswanto, Sigiet Haryo Pranoto, Dmitry Bokov, Rustem Magizov, Yasser Fakri Mustafa, A. Surendar, Rustem Zalilov, Alexandr Sviderskiy, Alla Vorobeva, Dmitry Vorobyev, and Ahmed Alkhayyat. Chin. Phys. B, 2022, 31(9): 096401.
[6] Spatial correlation of irreversible displacement in oscillatory-sheared metallic glasses
Shiheng Cui(崔世恒), Huashan Liu(刘华山), and Hailong Peng(彭海龙). Chin. Phys. B, 2022, 31(8): 086108.
[7] Effect of void size and Mg contents on plastic deformation behaviors of Al-Mg alloy with pre-existing void: Molecular dynamics study
Ning Wei(魏宁), Ai-Qiang Shi(史爱强), Zhi-Hui Li(李志辉), Bing-Xian Ou(区炳显), Si-Han Zhao(赵思涵), and Jun-Hua Zhao(赵军华). Chin. Phys. B, 2022, 31(6): 066203.
[8] Strengthening and softening in gradient nanotwinned FCC metallic multilayers
Yuanyuan Tian(田圆圆), Gangjie Luo(罗港杰), Qihong Fang(方棋洪), Jia Li(李甲), and Jing Peng(彭静). Chin. Phys. B, 2022, 31(6): 066204.
[9] Investigation of the structural and dynamic basis of kinesin dissociation from microtubule by atomistic molecular dynamics simulations
Jian-Gang Wang(王建港), Xiao-Xuan Shi(史晓璇), Yu-Ru Liu(刘玉如), Peng-Ye Wang(王鹏业),Hong Chen(陈洪), and Ping Xie(谢平). Chin. Phys. B, 2022, 31(5): 058702.
[10] Impact of thermostat on interfacial thermal conductance prediction from non-equilibrium molecular dynamics simulations
Song Hu(胡松), C Y Zhao(赵长颖), and Xiaokun Gu(顾骁坤). Chin. Phys. B, 2022, 31(5): 056301.
[11] Evolution of defects and deformation mechanisms in different tensile directions of solidified lamellar Ti-Al alloy
Yutao Liu(刘玉涛), Tinghong Gao(高廷红), Yue Gao(高越), Lianxin Li(李连欣), Min Tan(谭敏), Quan Xie(谢泉), Qian Chen(陈茜), Zean Tian(田泽安), Yongchao Liang(梁永超), and Bei Wang(王蓓). Chin. Phys. B, 2022, 31(4): 046105.
[12] Evaluation on performance of MM/PBSA in nucleic acid-protein systems
Yuan-Qiang Chen(陈远强), Yan-Jing Sheng(盛艳静), Hong-Ming Ding(丁泓铭), and Yu-Qiang Ma(马余强). Chin. Phys. B, 2022, 31(4): 048701.
[13] Molecular dynamics simulations of A-DNA in bivalent metal ions salt solution
Jingjing Xue(薛晶晶), Xinpeng Li(李新朋), Rongri Tan(谈荣日), and Wenjun Zong(宗文军). Chin. Phys. B, 2022, 31(4): 048702.
[14] Effect of the number of defect particles on the structure and dispersion relation of a two-dimensional dust lattice system
Rangyue Zhang(张壤月), Guannan Shi(史冠男), Hanyu Tang(唐瀚宇), Yang Liu(刘阳), Yanhong Liu(刘艳红), and Feng Huang(黄峰). Chin. Phys. B, 2022, 31(3): 035204.
[15] Molecular dynamics simulations on the wet/dry self-latching and electric fields triggered wet/dry transitions between nanosheets: A non-volatile memory nanostructure
Jianzhuo Zhu(朱键卓), Xinyu Zhang(张鑫宇), Xingyuan Li(李兴元), and Qiuming Peng(彭秋明). Chin. Phys. B, 2022, 31(2): 024703.
No Suggested Reading articles found!