Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(4): 047301    DOI: 10.1088/1674-1056/19/4/047301
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Electric-stress reliability and current collapse of different thickness SiNx passivated AlGaN/GaN high electron mobility transistors

Yang Ling(杨凌), Hu Gui-Zhou(胡贵州), Hao Yue(郝跃), Ma Xiao-Hua(马晓华), Quan Si(全思), Yang Li-Yuan(杨丽媛), and Jiang Shou-Gao(姜守高)
Key Laboratory for Wide Band-Gap Semiconductor Materials and Devices, School of Microelectronics, Xidian University, Xi'an 710071,China
Abstract  This paper investigates the impact of electrical degradation and current collapse on different thickness SiNx passivated AlGaN/GaN high electron mobility transistors. It finds that higher thickness SiNx passivation can significantly improve the high-electric-field reliability of a device. The degradation mechanism of the SiNx passivation layer under ON-state stress has also been discussed in detail. Under the ON-state stress, the strong electric-field led to degradation of SiNx passivation located in the gate-drain region. As the thickness of SiNx passivation increases, the density of the surface state will be increased to some extent. Meanwhile, it is found that the high NH3 flow in the plasma enhanced chemical vapour deposition process could reduce the surface state and suppress the current collapse.
Keywords:  SiNx passivated AlGaN/GaN high electron mobility transistors      degradation      current collapse      surface states  
Received:  16 June 2009      Revised:  04 August 2009      Accepted manuscript online: 
PACS:  85.30.Tv (Field effect devices)  
  85.30.De (Semiconductor-device characterization, design, and modeling)  
  81.15.Gh (Chemical vapor deposition (including plasma-enhanced CVD, MOCVD, ALD, etc.))  
  81.65.Rv (Passivation)  
  73.50.Fq (High-field and nonlinear effects)  
Fund: Project supported by the State Key Program of National Natural Science Foundation of China (Grant No.~60736033).

Cite this article: 

Yang Ling(杨凌), Hu Gui-Zhou(胡贵州), Hao Yue(郝跃), Ma Xiao-Hua(马晓华), Quan Si(全思), Yang Li-Yuan(杨丽媛), and Jiang Shou-Gao(姜守高) Electric-stress reliability and current collapse of different thickness SiNx passivated AlGaN/GaN high electron mobility transistors 2010 Chin. Phys. B 19 047301

[1] Uemoto Y, Shibata D, Yanagihara M, Ishida H, Matsuo H, Nagai S, Batta N, Ming L, Ueda T and Tanaka T 2007 IEEE IEDM Tech. Digest}. 861
[2] Wu Y F, Kapolnex D and Ibbetson J P 2007 IEEE IEDM Tech. Digest}. 405
[3] Jimenez J L, Chowdhury U, Kao M Y, Balistreri A, Lee C, Saunier P and Chao P C 2008 IEEE Int. Rel. Phys. Symp. Proceedings
[4] Joh J and Alamo J A 2006 IEEE IEDM Tech. Digest}. 415
[5] Joh J and Alamo J A 2008 IEEE Electron Dev. Lett. 29 287
[6] Zanoni E, Meneghesso G, Verzuesi G and Danesin F 2007 IEEE IEDM Tech. Digest}. 381
[7] Gu W P, Duan H T, Ni J Y, Hao Y, Zhang J C, Feng Q and Ma X H 2009 Chin. Phys. B 18 1601
[8] Wei W, Lin R B, Hao Y and Feng Q 2008 Chin. Phys. B 17 467
[9] Gu W P, Hao Y, Zhang J C, Wang C, Feng Q and Ma X H 2009 Acta Phys. Sin. 58 511 (in Chinese)
[10] Mittereder J A, Binari S C, Klein P B, Roussos J A, Katzer D S and Storm D F 2003 Appl. Phys. Lett. 83 1650
[11] Sozza A, Dua C, Morvan E, Delage S, Rampazzo F, Tazzoli A, Danesin F and Meneghesso G 2005 IEEE IEDM Tech. Digest}. 590
[12] Sarua A, Ji H, Kuball M, Uren M J, Martin T, Nash K J, Hilton K P and Balmer R S 2006 Appl. Phys. Lett. 88 103502
[13] Binari S C, Klein P B and Kazior T E 2002 Proc. IEEE 9 1048
[14] Kikkawa T, Nagahara M, Okamoto N, Tateno Y, Yamaguchi Y, Hara N, Joshin K and Asbeck P M 2001 IEEE IEDM Tech. Digest}. 585
[15] Dieci D, Sozzi G, Menozzi R, Tediosi E, Lanzieri C and Canali C 2001 IEEE Trans. Electron Devices 48 1929
[16] Menozzi R, Cova P, Canali C and Fantini F 1996 IEEE Trans. Electron Devices 43 543
[17] Schroder D K 2006 Semiconductor Material and Device Characterization} 3rd ed. (Hoboken: Wiley NJ)
[1] Chiral symmetry protected topological nodal superconducting phase and Majorana Fermi arc
Mei-Ling Lu(卢美玲), Yao Wang(王瑶), He-Zhi Zhang(张鹤之), Hao-Lin Chen(陈昊林), Tian-Yuan Cui(崔天元), and Xi Luo(罗熙). Chin. Phys. B, 2023, 32(2): 027301.
[2] High performance SiC trench-type MOSFET with an integrated MOS-channel diode
Jie Wei(魏杰), Qinfeng Jiang(姜钦峰), Xiaorong Luo(罗小蓉), Junyue Huang(黄俊岳), Kemeng Yang(杨可萌), Zhen Ma(马臻), Jian Fang(方健), and Fei Yang(杨霏). Chin. Phys. B, 2023, 32(2): 028503.
[3] A novel algorithm to analyze the dynamics of digital chaotic maps in finite-precision domain
Chunlei Fan(范春雷) and Qun Ding(丁群). Chin. Phys. B, 2023, 32(1): 010501.
[4] Degradation and breakdown behaviors of SGTs under repetitive unclamped inductive switching avalanche stress
Chenkai Zhu(朱晨凯), Linna Zhao(赵琳娜), Zhuo Yang(杨卓), and Xiaofeng Gu(顾晓峰). Chin. Phys. B, 2022, 31(9): 097303.
[5] Exploring Majorana zero modes in iron-based superconductors
Geng Li(李更), Shiyu Zhu(朱诗雨), Peng Fan(范朋), Lu Cao(曹路), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2022, 31(8): 080301.
[6] Self-screening of the polarized electric field in wurtzite gallium nitride along [0001] direction
Qiu-Ling Qiu(丘秋凌), Shi-Xu Yang(杨世旭), Qian-Shu Wu(吴千树), Cheng-Lang Li(黎城朗), Qi Zhang(张琦), Jin-Wei Zhang(张津玮), Zhen-Xing Liu(刘振兴), Yuan-Tao Zhang(张源涛), and Yang Liu(刘扬). Chin. Phys. B, 2022, 31(4): 047103.
[7] Determination of the surface states from the ultrafast electronic states in a thermoelectric material
Tongyao Wu(吴桐尧), Hongyuan Wang(王洪远), Yuanyuan Yang(杨媛媛), Shaofeng Duan(段绍峰), Chaozhi Huang(黄超之), Tianwei Tang(唐天威), Yanfeng Guo(郭艳峰), Weidong Luo(罗卫东), and Wentao Zhang(张文涛). Chin. Phys. B, 2022, 31(2): 027902.
[8] A novel Si-rich SiN bilayer passivation with thin-barrier AlGaN/GaN HEMTs for high performance millimeter-wave applications
Zhihong Chen(陈治宏), Minhan Mi(宓珉瀚), Jielong Liu(刘捷龙), Pengfei Wang(王鹏飞), Yuwei Zhou(周雨威), Meng Zhang(张濛), Xiaohua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2022, 31(11): 117105.
[9] Degradation of β-Ga2O3 Schottky barrier diode under swift heavy ion irradiation
Wen-Si Ai(艾文思), Jie Liu(刘杰), Qian Feng(冯倩), Peng-Fei Zhai(翟鹏飞), Pei-Pei Hu(胡培培), Jian Zeng(曾健), Sheng-Xia Zhang(张胜霞), Zong-Zhen Li(李宗臻), Li Liu(刘丽), Xiao-Yu Yan(闫晓宇), and You-Mei Sun(孙友梅). Chin. Phys. B, 2021, 30(5): 056110.
[10] Analysis on degradation mechanisms of normally-off p-GaN gate AlGaN/GaN high-electron mobility transistor
Si-De Song(宋思德), Su-Zhen Wu(吴素贞), Guo-Zhu Liu(刘国柱), Wei Zhao(赵伟), Yin-Quan Wang(王印权), Jian-Wei Wu(吴建伟), and Qi He(贺琪). Chin. Phys. B, 2021, 30(4): 047103.
[11] Passivation of PEA+ to MAPbI3 (110) surface states by first-principles calculations
Wei Hu(胡伟), Ying Tian(田颖), Hong-Tao Xue(薛红涛), Wen-Sheng Li(李文生), and Fu-Ling Tang(汤富领). Chin. Phys. B, 2021, 30(4): 047101.
[12] Distribution of donor states on the surfaceof AlGaN/GaN heterostructures
Yue-Bo Liu(柳月波), Hong-Hui Liu(刘红辉), Jun-Yu Shen(沈俊宇), Wan-Qing Yao(姚婉青), Feng-Ge Wang(王风格), Yuan Ren(任远), Min-Jie Zhang(张敏杰), Zhi-Sheng Wu(吴志盛), Yang Liu(刘扬), and Bai-Jun Zhang(张佰君). Chin. Phys. B, 2021, 30(12): 128102.
[13] Abnormal phenomenon of source-drain current of AlGaN/GaN heterostructure device under UV/visible light irradiation
Yue-Bo Liu(柳月波), Jun-Yu Shen(沈俊宇), Jie-Ying Xing(邢洁莹), Wan-Qing Yao(姚婉青), Hong-Hui Liu(刘红辉), Ya-Qiong Dai(戴雅琼), Long-Kun Yang(杨隆坤), Feng-Ge Wang(王风格), Yuan Ren(任远), Min-Jie Zhang(张敏杰), Zhi-Sheng Wu(吴志盛), Yang Liu(刘扬), and Bai-Jun Zhang(张佰君). Chin. Phys. B, 2021, 30(11): 117302.
[14] Numerical simulation of acoustic field under mechanical stirring
Jin-He Liu(刘金河), Zhuang-Zhi Shen(沈壮志), and Shu-Yu Lin(林书玉). Chin. Phys. B, 2021, 30(10): 104302.
[15] A novel method of constructing high-dimensional digital chaotic systems on finite-state automata
Jun Zheng(郑俊), Han-Ping Hu(胡汉平). Chin. Phys. B, 2020, 29(9): 090502.
No Suggested Reading articles found!