Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(4): 043401    DOI: 10.1088/1674-1056/19/4/043401
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

Stereodynamics study of reactions N(2D)+HD→NH+D and ND+H

Yue Xian-Fang(岳现房)a)†, Cheng Jie(程杰)a), Li Hong(李宏)a), Zhang Yong-Qiang(张永强)a), and Emilia L. Wub)
a Department of Physics and Information Engineering, Jining University, Qufu 273155, China; Department of Chemical Engineering and Materials Science, 421 Washington Avenue SE, Minneapolis, Minnesota 55455, USA
Abstract  The product polarizations of the title reactions are investigated by employing the quasi-classical trajectory (QCT) method. The four generalized polarization-dependent differential cross-sections (PDDCSs) (2π/σ)(dσ00/dωt), (2π/σ)(dσ20/dωt), (2π/σ)(dσ22+/dωt), and (2π/σ)(dσ21/dωt) are calculated in the centre-of-mass frame. The distribution of the angle between k and j, P(θr), the distribution of the dihedral angle denoting kkj correlation, P(ϕr), as well as the angular distribution of product rotational vectors in the form of polar plots P(θr,ϕr) are calculated. The isotope effect is also revealed and primarily attributed to the difference in mass factor between the two title reactions.
Keywords:  stereodynamics      quasi-classical trajectory method      vector correlation      polarization-dependent differential cross-section      isotope effect  
Received:  11 August 2009      Revised:  28 September 2009      Accepted manuscript online: 
PACS:  82.30.Cf (Atom and radical reactions; chain reactions; molecule-molecule reactions)  
  82.20.Tr (Kinetic isotope effects including muonium)  
  82.20.Fd (Collision theories; trajectory models)  
  82.20.Hf (Product distribution)  
Fund: Project supported by Young Funding of Jining University, China (Grant No.~2009QNKJ02).

Cite this article: 

Yue Xian-Fang(岳现房), Cheng Jie(程杰), Li Hong(李宏), Zhang Yong-Qiang(张永强), and Emilia L. Wu Stereodynamics study of reactions N(2D)+HD→NH+D and ND+H 2010 Chin. Phys. B 19 043401

[1] Han K L and He G Z 2007 J. Photochem. Photobiol. C: Photochem. Rev. 8 55
[2] Liu Y F, Jiang L J, Ma H and Sun J F 2008 Chin. Phys. B 17 1674
[3] Chu T S, Zhang Y and Han K L 2006 Int. Rev. Phys. Chem. 25 201
[4] Yan S, Wu Y T, Zhang B, Yue X F and Liu K P 2007 Science 316 1723
[5] Yue X F, Sun J L, Yin H M, Wei Q and Han K L 2009 J. Phys. Chem. A 113 3303
[6] Shi D H, Zhang J P, Sun J F, Liu Y F, Zhu Z L, Ma H and Yang X D 2008 Chin. Phys. B 17 3678
[7] Luo W L, Ruan W, Zhang L, Zhu Z H and Fu Y B 2009 Chin. Phys. B 18 167
[8] Chi B Q, Liu L and Wang J G 2008 Chin. Phys. B 17 2890
[9] Chu T S and Han K L 2008 Phys. Chem. Chem. Phys. 10 2431
[10] Chen M D, Han K L and Lou N Q 2002 Chem. Phys. Lett. 357 483
[11] Chen M D, Han K L and Lou N Q 2003 J. Chem. Phys. 118 4463
[12] Ho T S, Rabitz H, Aoiz F J, Ba\{n}ares L, Vázquez S A and Harding L B 2003 J. Chem. Phys. 119 3063
[13] Varandas A J C and Poveda L A 2006 Theor. Chem. Acc. 116 4
[14] Qu Z W, Zhu H, Schinke R, Adam L and Hack W 2005 J. Chem. Phys. 122 204313
[15] Lin S Y and Guo H 2006 J. Chem. Phys. 124 031101
[16] Chu T S, Han K L and Varandas A J C 2006 J. Phys. Chem. A 110 1666
[17] Varandas A J C, Chu T S, Han K L and Caridade P J S B 2006 Chem. Phys. Lett. 421 415
[18] Chu T S, Duan Y B, Yuan S P and Varandas 2007 Chem. Phys. Lett. 444 351
[19] Castillo J F, Bulut N, Ba\{n}ares L and Gogtas F 2007 Chem. Phys. 332 119
[20] Rao B J and Mahapatra S 2007 J. Chem. Phys. 127 244307
[21] Han K L, He G Z and Lou N Q 1996 J. Chem. Phys. 105 8699
[22] Zhang X and Han K L 2006 Int. J. Quantun Chem. 106 1815
[23] Han K L, Zhang L, Xu D L, He G Z and Lou N Q 2001 J. Phys. Chem. A 105 2956
[24] Xu W W, Liu X G, Luan S X, Sun S S and Zhang Q G 2009 Chin. Phys. B 18 339
[25] Chen M D, Han K L and Lou N Q 2002 Chem. Phys. 283 463
[26] Ma J J, Chen M D, Cong S L and Han K L 2006 Chem. Phys. 327 529
[27] Wang M L, Han K L and He G Z 1998 J. Chem. Phys. 109 5446
[28] Wang M L, Han K L and He G Z 1998 J. Phys. Chem. A 102 20204
[29] Chen M D, Han K L and Lou N Q 2002 Chem. Phys. Lett. 357 483
[30] Li R J, Han K L, Li F E, Lu R C, He G Z and Lou N Q 1994 Chem. Phys. Lett. 220 281
[1] Isotope effect and Coriolis coupling effect forthe Li + H(D)Cl→LiCl + H(D) reaction
Hongsheng Zhai(翟红生), Guanglei Liang(梁广雷), Junxia Ding(丁俊霞), Yufang Liu(刘玉芳). Chin. Phys. B, 2019, 28(5): 053401.
[2] Theoretical study of the radiative decay processes in H+(D+, T+)-Be collisions
Huilin Wei(魏惠琳), Xiaojun Liu(刘晓军). Chin. Phys. B, 2018, 27(12): 123101.
[3] Laser phase effect on asymmetric harmonic distribution in H2+
Li-Qiang Feng(冯立强), Wen-Liang Li(李文亮), Hui Liu(刘辉). Chin. Phys. B, 2017, 26(4): 044206.
[4] Effects of collision energy and rotational quantum number on stereodynamics of the reactions: H(2S)+NH(v=0, j=0, 2, 5, 10)→N(4S)+H2
Wei Wang(王伟), Yong-Jiang Yu(于永江), Gang Zhao(赵刚), Chuan-Lu Yang(杨传路). Chin. Phys. B, 2016, 25(8): 083402.
[5] Energy and rotation-dependent stereodynamics of H(2S) + NH(a1Δ)→H2(X1Σg+) + N(2D) reaction
Yong-Qing Li(李永庆), Yun-Fan Yang(杨云帆), Yang Yu(于洋), Yong-jia Zhang(张永嘉), Feng-Cai Ma(马凤才). Chin. Phys. B, 2016, 25(2): 023401.
[6] Stereodynamics of the reactions: F+H2/HD/HT→FH+H/D/T
Chi Xiao-Lin (迟晓琳), Zhao Jin-Feng (赵金峰), Zhang Yong-Jia (张永嘉), Ma Feng-Cai (马凤才), Li Yong-Qing (李永庆). Chin. Phys. B, 2015, 24(5): 053401.
[7] Quasi-classical trajectory study of collision energy effect on the stereodynamics of H + BrO→O + HBr reaction
Xie Ting-Xian (解廷献), Zhang Ying-Ying (张莹莹), Shi Ying (石英), Li Ze-Rui (李泽瑞), Jin Ming-Xing (金明星). Chin. Phys. B, 2015, 24(4): 043402.
[8] Vector correlations study of the reaction N(2D)+ H2(X1Σg+)→NH(a1Δ)+ H(2S) with different collision energies and reagent vibration excitations
Li Yong-Qing (李永庆), Zhang Yong-Jia (张永嘉), Zhao Jin-Feng (赵金峰), Zhao Mei-Yu (赵美玉), Ding Yong (丁勇). Chin. Phys. B, 2015, 24(11): 113402.
[9] Effects of the vibrational and rotational excitation of reagent on the stereodynamics of the reaction S(3P) + H2→SH + H
Shan Guang-Ling (单广玲), Wang Mei-Shan (王美山), Yang Chuan-Lu (杨传路), Li Yan-Qing (李艳青). Chin. Phys. B, 2014, 23(6): 068201.
[10] Quasi-classical trajectory study of the isotope effect on the stereodynamics in the reaction H(2S)+CH(X2Π; v=0, j=1)→C(1D)+H2(X1Σg+)
Wang Yun-Hui (王允辉), Xiao Chuan-Yun (肖传云), Deng Kai-Ming (邓开明), Lu Rui-Feng (陆瑞锋). Chin. Phys. B, 2014, 23(4): 043401.
[11] Stereodynamics study of the H’(2S)+NH(X3-→N(4S) +H2 reaction
Wei Qiang (魏强). Chin. Phys. B, 2014, 23(2): 023401.
[12] Theoretical study of stereodynamics for the N+H2/D2/T2 reactions
Li Yong-Qing (李永庆), Zhao Jin-Feng (赵金峰), Zhang Yong-Jia (张永嘉), Chi Xiao-Lin (迟晓琳), Ding Yong (丁勇), Ma Feng-Cai (马凤才). Chin. Phys. B, 2014, 23(12): 123401.
[13] Quasi-classical trajectory investigation on the stereodynamics of Li+DF (v=1-6, j=0)→LiF+D reaction
Zhang Ying-Ying (张莹莹), Li Shu-Juan (李淑娟), Shi Ying (石英), Xie Ting-Xian (解廷献), Jin Ming-Xing (金明星). Chin. Phys. B, 2014, 23(12): 123402.
[14] Stereodynamics in reaction O(1D)+CH4→OH+CH3
Sha Guang-Yan (沙广燕), Yuan Jiu-Chuang (袁久闯), Meng Chang-Gong (孟长功), Chen Mao-Du (陈茂笃). Chin. Phys. B, 2014, 23(1): 018202.
[15] Quasiclassical trajectory theoretical study on the chemical stereodynamics of the O(1D)+H2→OH+H reaction and its isotopic variants (HD, D2)
Yao Cui-Xia (姚翠霞), Zhao Guang-Jiu (赵广久). Chin. Phys. B, 2013, 22(8): 083403.
No Suggested Reading articles found!