|
|
Density functional study on chirospectra of hydrogen-bonded systems X-(H2O) 3 (X = F,Cl,Br,I) |
Mang Chao-Yong(莽朝永)a)b)†,Li Zhen-Gui(李珍贵)a), and Wu Ke-Chen(吴克琛)c)‡ |
a College of Life Science and Chemistry, Dali University, Dali 671000, China; b Institute of Eastern-Himalaya Biodiversity Research, Dali University, Dali 671000, China; c State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China |
|
|
Abstract This paper calculates the molecular structures, infrared, Raman, circular dichroism spectra and optical rotatory powers of some hydrogen-bonded supramolecular systems as a cyclic water trimer, (H2O)3 and its pyramidal halide complexes, $X^-$(H2O)3 ($X$ = F, Cl, Br, I) with the gradient-corrected density functional theory method at the B3LYP/6--311++G(2d,2p) and B3LYP/Aug--cc--pVTZ levels. It finds that the complexation of halide anions with the water trimer can efficiently modulate the chirally optical behaviors. The calculated vibrational circular dichroism spectrum illuminates that the vibrational rotational strength of S(+)--(H2O)3 mostly originates from the O--H rocking modes, whereas chirality of S(--)--$X^-$(H2O)$_{3 }$ ($X$ = F, Cl, Br, I) has its important origin in the O--H stretching modes. The calculated optical rotatory power demonstrates that S(+)--(H2O)3 and S(+)--F$^-$(H2O)$_{3 }$ are positively chiral, whereas S(--)--$X^-$(H2O)$_{3 }$ ($X$ = Cl, Br, I) are negatively chiral. With the polarizable continuum model, calculated bulk solvent effect in the solvents water and carbontetrachloride and argon shows that the positive chirality of S(+)--(H2O)3 is enhanced and the negative chirality of S(--)--$X^-$(H2O)$_{3 }$ ($X$ = Cl, Br, I) and the positive chirality of S(+)--F$^-$(H2O)3 are reduced with an augmentation of the solvent dielectric constant.
|
Received: 03 March 2009
Revised: 01 June 2009
Accepted manuscript online:
|
PACS:
|
78.30.Cp
|
|
|
78.20.Fm
|
(Birefringence)
|
|
78.20.Ek
|
(Optical activity)
|
|
61.20.Gy
|
(Theory and models of liquid structure)
|
|
63.50.-x
|
(Vibrational states in disordered systems)
|
|
77.22.Ch
|
(Permittivity (dielectric function))
|
|
Fund: Project supported by the Scientific
Foundation of Education Department of Yunnan Province of China
(Grant No.~07Z11621), the Innovation Foundation for New Researchers
in Dali University (Grant No. KY421040), and the National Natural
Science Foundation of |
Cite this article:
Mang Chao-Yong(莽朝永),Li Zhen-Gui(李珍贵), and Wu Ke-Chen(吴克琛) Density functional study on chirospectra of hydrogen-bonded systems X-(H2O) 3 (X = F,Cl,Br,I) 2010 Chin. Phys. B 19 043601
|
[1] |
Pugliano N and Saykally R J 1992 Science 257 1937
|
[2] |
Xantheas S S and Dunning Jr T H J 1993 J. Chem. Phys. 99 8774
|
[3] |
Wales D J and Hodges M P 1998 Chem. Phys. Lett. 286 65
|
[4] |
Baik J, Kim J, Majumdar D and Kim K S 1999 J. Chem. Phys. 110 9116
|
[5] |
Xantheas S S 1996 J. Phys. Chem. 100 9703
|
[6] |
Lee H M and Kim K S 2001 J. Chem. Phys. 114 4461
|
[7] |
Lee H M, Suh S B and Kim K S 2003 J. Chem. Phys. 119 7685
|
[8] |
Merrill G N and Webb S P 2003 J. Phys. Chem. A 107 7852
|
[9] |
Feller D, Glendening E D and Woon D E 1995 J. Chem. Phys. 103 3526
|
[10] |
Glendening E D and Feller D 1995 J. Phys. Chem. 99 3060
|
[11] |
Feller D 1997 J. Phys. Chem. A 101 2723
|
[12] |
Lee H M, Kim J K, Lee S, Mhin B J and Kim K S 1999 J. Chem. Phys. 111 3995
|
[13] |
Gruenloh C J, Carney J R, Arrington C A, Zwier T S, Fredericks S Y and Jordan K D 1997 Science 276 1678
|
[14] |
Miyazaki M, Fujii A and Mikami N 2004 J. Phys. Chem. A 108 8269
|
[15] |
Liu Y, Peng C D, Lan X F, Luo X S, Shen Z H, Lu J and Ni X W 2005 Acta Phys. Sin. 54 5455 (in Chinese)
|
[16] |
Alkorata I, Zborowski K and Elguero J 2006 Chem. Phys. Lett. 427 289
|
[17] |
Alkorata I and Elguero J 2002 J. Chem. Phys. 117 6463
|
[18] |
Alkorata I, Elguero J and Zborowski K J 2007 J. Phys. Chem. A 111 1096
|
[19] |
Zborowski K, Proniewcz L M, Alkorata I and Elguero J 2005 Chem. Phys. Lett. 409 163
|
[20] |
Perdew J P 1986 Phys. Rev. B 33 8822
|
[21] |
Lee C, Yang W and Parr R G 1988 Phys. Rev. B 37 785
|
[22] |
Miehlich B, Savin A, Stoll H and Preuss H 1989 Chem. Phys. Lett. 157 200
|
[23] |
Vosko S H, Wilk L and Nusair M 1980 Can. J. Phys. 58 1200
|
[24] |
Krishnan R, Binkley J S, Seeger R and Pople J A 1980 J. Chem. Phys. 72 650
|
[25] |
laudeau J P, McGrath M P, Curtiss L A and Radom L 1997 J. Chem. Phys. 107 5016
|
[26] |
Clark T, Chandrasekhar J and Schleyer P V R 1983 J. Comp. Chem. 4 294
|
[27] |
Dunning Jr T H 1989 J. Chem. Phys. 90 1007
|
[28] |
Woon D E and Dunning Jr T H 1994 J. Chem. Phys. 100] 2975
|
[29] |
Kendall R A, Dunning Jr T H and Harrison R J 1992 J. Chem. Phys. 96 6796
|
[30] |
Woon D E and Dunning Jr T H 1993 J. Chem. Phys. 98] 1358
|
[31] |
Wilson A K, Woon D E, Peterson K A and Dunning Jr T H 1999 J. Chem. Phys. 110 7667
|
[32] |
Peterson K A, Figgen D, Goll E, Stoll H and Dolg M 2003 J. Chem. Phys. 119 11113
|
[33] |
Frisch M J, Trucks G W, Schlegel H B, Scuseria G E, Robb M A, Cheeseman J R, Montgomery J A, Vreven Jr T, Kudin K N, Burant J C, Millam J M, Iyengar S S, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson G A, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox J E, Hratchian H P, Cross J B, Adamo C, Jaramillo J, Gomperts R, Stratmann R E, Yazyev O, Austin A J, Cammi R, Pomelli C, Ochterski J W, Ayala P Y, Morokuma K, Voth G A, Salvador P, Dannenberg J J, Zakrzewski V G, Dapprich S, Daniels A D, Strain M C, Farkas O, Malick D K, Rabuck A D, Raghavachari K, Foresman J B, Ortiz J V, Cui Q, Baboul A G, Clifford S, Cioslowski J, Stefanov B B, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin R L, Fox D J, Keith T, Al-Laham M A, Peng C Y, Nanayakkara A, Challacombe M, Gill P M W, Johnson B, Chen W, Wong M W, Gonzalez C and Pople J A 2003 Gaussian} 03 (Revision B.05) (Pittsburgh P A: Gaussian Inc.)
|
[34] |
SImonato J P, Pecaut J and Marchon J C 1998 J. Am. Chem. Soc. 120 7363
|
[35] |
Toronto D, Aarrazin F, Pecaut J, Marchon J C, Shang M and Scheidt W R 1998 Inorg. Chem. 37 526
|
[36] |
Miertus S, Scrocco E and Tomasi J 1981 J. Chem. Phys. 55 117
|
[37] |
Zhang S L, Chen H S, Yan S and Yin Y H 2007 Acta Phys. Sin. 56 2553 (in Chinese)
|
[38] |
Mo O, Yanez M and Elguero J 1992 J. Chem. Phys. 97] 6628
|
[39] |
Kim J, Lee H M, Suh S B, Majumdar D and Kim K S 2000 J. Chem. Phys. 113 5259
|
[40] |
Xantheas S S and Dunning Jr T H 1994 J. Phys. Chem. 98] 13489
|
[41] |
Liu H T and Li J M 2005 Chin. Phys. 14 1974
|
[42] |
Zhang C R, Chen H S, Song Y and Xu G J 2007 Chin. Phys. 16] 2394
|
[43] |
Bentwood R M, Barnes A J and Orville-Thomas W J 1980 J. Mol. Spectrosc. 84 391
|
[44] |
Choi J O, Kuwata K T, Cao Y B and Okumura M 1998 J. Phys. Chem. A 102 503
|
[45] |
Isborn C, Claborn K and Kahr B 2007 J. Phys. Chem. A 111 7800
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|