Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(4): 043601    DOI: 10.1088/1674-1056/19/4/043601
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

Density functional study on chirospectra of hydrogen-bonded systems X-(H2O) 3 (X = F,Cl,Br,I)

Mang Chao-Yong(莽朝永)a)b),Li Zhen-Gui(李珍贵)a), and Wu Ke-Chen(吴克琛)c)
a College of Life Science and Chemistry, Dali University, Dali 671000, China; b Institute of Eastern-Himalaya Biodiversity Research, Dali University, Dali 671000, China; c State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
Abstract  This paper calculates the molecular structures, infrared, Raman, circular dichroism spectra and optical rotatory powers of some hydrogen-bonded supramolecular systems as a cyclic water trimer, (H2O)3 and its pyramidal halide complexes, $X^-$(H2O)3 ($X$ = F, Cl, Br, I) with the gradient-corrected density functional theory method at the B3LYP/6--311++G(2d,2p) and B3LYP/Aug--cc--pVTZ levels. It finds that the complexation of halide anions with the water trimer can efficiently modulate the chirally optical behaviors. The calculated vibrational circular dichroism spectrum illuminates that the vibrational rotational strength of S(+)--(H2O)3 mostly originates from the O--H rocking modes, whereas chirality of S(--)--$X^-$(H2O)$_{3 }$ ($X$ = F, Cl, Br, I) has its important origin in the O--H stretching modes. The calculated optical rotatory power demonstrates that S(+)--(H2O)3 and S(+)--F$^-$(H2O)$_{3 }$ are positively chiral, whereas S(--)--$X^-$(H2O)$_{3 }$ ($X$ = Cl, Br, I) are negatively chiral. With the polarizable continuum model, calculated bulk solvent effect in the solvents water and carbontetrachloride and argon shows that the positive chirality of S(+)--(H2O)3 is enhanced and the negative chirality of S(--)--$X^-$(H2O)$_{3 }$ ($X$ = Cl, Br, I) and the positive chirality of S(+)--F$^-$(H2O)3 are reduced with an augmentation of the solvent dielectric constant.
Keywords:  water cluster      hydrogen-bond      vibrational circular dichroism      infrared spectra      density functional theory  
Received:  03 March 2009      Revised:  01 June 2009      Accepted manuscript online: 
PACS:  78.30.Cp  
  78.20.Fm (Birefringence)  
  78.20.Ek (Optical activity)  
  61.20.Gy (Theory and models of liquid structure)  
  63.50.-x (Vibrational states in disordered systems)  
  77.22.Ch (Permittivity (dielectric function))  
Fund: Project supported by the Scientific Foundation of Education Department of Yunnan Province of China (Grant No.~07Z11621), the Innovation Foundation for New Researchers in Dali University (Grant No. KY421040), and the National Natural Science Foundation of

Cite this article: 

Mang Chao-Yong(莽朝永),Li Zhen-Gui(李珍贵), and Wu Ke-Chen(吴克琛) Density functional study on chirospectra of hydrogen-bonded systems X-(H2O) 3 (X = F,Cl,Br,I) 2010 Chin. Phys. B 19 043601

[1] Pugliano N and Saykally R J 1992 Science 257 1937
[2] Xantheas S S and Dunning Jr T H J 1993 J. Chem. Phys. 99 8774
[3] Wales D J and Hodges M P 1998 Chem. Phys. Lett. 286 65
[4] Baik J, Kim J, Majumdar D and Kim K S 1999 J. Chem. Phys. 110 9116
[5] Xantheas S S 1996 J. Phys. Chem. 100 9703
[6] Lee H M and Kim K S 2001 J. Chem. Phys. 114 4461
[7] Lee H M, Suh S B and Kim K S 2003 J. Chem. Phys. 119 7685
[8] Merrill G N and Webb S P 2003 J. Phys. Chem. A 107 7852
[9] Feller D, Glendening E D and Woon D E 1995 J. Chem. Phys. 103 3526
[10] Glendening E D and Feller D 1995 J. Phys. Chem. 99 3060
[11] Feller D 1997 J. Phys. Chem. A 101 2723
[12] Lee H M, Kim J K, Lee S, Mhin B J and Kim K S 1999 J. Chem. Phys. 111 3995
[13] Gruenloh C J, Carney J R, Arrington C A, Zwier T S, Fredericks S Y and Jordan K D 1997 Science 276 1678
[14] Miyazaki M, Fujii A and Mikami N 2004 J. Phys. Chem. A 108 8269
[15] Liu Y, Peng C D, Lan X F, Luo X S, Shen Z H, Lu J and Ni X W 2005 Acta Phys. Sin. 54 5455 (in Chinese)
[16] Alkorata I, Zborowski K and Elguero J 2006 Chem. Phys. Lett. 427 289
[17] Alkorata I and Elguero J 2002 J. Chem. Phys. 117 6463
[18] Alkorata I, Elguero J and Zborowski K J 2007 J. Phys. Chem. A 111 1096
[19] Zborowski K, Proniewcz L M, Alkorata I and Elguero J 2005 Chem. Phys. Lett. 409 163
[20] Perdew J P 1986 Phys. Rev. B 33 8822
[21] Lee C, Yang W and Parr R G 1988 Phys. Rev. B 37 785
[22] Miehlich B, Savin A, Stoll H and Preuss H 1989 Chem. Phys. Lett. 157 200
[23] Vosko S H, Wilk L and Nusair M 1980 Can. J. Phys. 58 1200
[24] Krishnan R, Binkley J S, Seeger R and Pople J A 1980 J. Chem. Phys. 72 650
[25] laudeau J P, McGrath M P, Curtiss L A and Radom L 1997 J. Chem. Phys. 107 5016
[26] Clark T, Chandrasekhar J and Schleyer P V R 1983 J. Comp. Chem. 4 294
[27] Dunning Jr T H 1989 J. Chem. Phys. 90 1007
[28] Woon D E and Dunning Jr T H 1994 J. Chem. Phys. 100] 2975
[29] Kendall R A, Dunning Jr T H and Harrison R J 1992 J. Chem. Phys. 96 6796
[30] Woon D E and Dunning Jr T H 1993 J. Chem. Phys. 98] 1358
[31] Wilson A K, Woon D E, Peterson K A and Dunning Jr T H 1999 J. Chem. Phys. 110 7667
[32] Peterson K A, Figgen D, Goll E, Stoll H and Dolg M 2003 J. Chem. Phys. 119 11113
[33] Frisch M J, Trucks G W, Schlegel H B, Scuseria G E, Robb M A, Cheeseman J R, Montgomery J A, Vreven Jr T, Kudin K N, Burant J C, Millam J M, Iyengar S S, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson G A, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox J E, Hratchian H P, Cross J B, Adamo C, Jaramillo J, Gomperts R, Stratmann R E, Yazyev O, Austin A J, Cammi R, Pomelli C, Ochterski J W, Ayala P Y, Morokuma K, Voth G A, Salvador P, Dannenberg J J, Zakrzewski V G, Dapprich S, Daniels A D, Strain M C, Farkas O, Malick D K, Rabuck A D, Raghavachari K, Foresman J B, Ortiz J V, Cui Q, Baboul A G, Clifford S, Cioslowski J, Stefanov B B, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin R L, Fox D J, Keith T, Al-Laham M A, Peng C Y, Nanayakkara A, Challacombe M, Gill P M W, Johnson B, Chen W, Wong M W, Gonzalez C and Pople J A 2003 Gaussian} 03 (Revision B.05) (Pittsburgh P A: Gaussian Inc.)
[34] SImonato J P, Pecaut J and Marchon J C 1998 J. Am. Chem. Soc. 120 7363
[35] Toronto D, Aarrazin F, Pecaut J, Marchon J C, Shang M and Scheidt W R 1998 Inorg. Chem. 37 526
[36] Miertus S, Scrocco E and Tomasi J 1981 J. Chem. Phys. 55 117
[37] Zhang S L, Chen H S, Yan S and Yin Y H 2007 Acta Phys. Sin. 56 2553 (in Chinese)
[38] Mo O, Yanez M and Elguero J 1992 J. Chem. Phys. 97] 6628
[39] Kim J, Lee H M, Suh S B, Majumdar D and Kim K S 2000 J. Chem. Phys. 113 5259
[40] Xantheas S S and Dunning Jr T H 1994 J. Phys. Chem. 98] 13489
[41] Liu H T and Li J M 2005 Chin. Phys. 14 1974
[42] Zhang C R, Chen H S, Song Y and Xu G J 2007 Chin. Phys. 16] 2394
[43] Bentwood R M, Barnes A J and Orville-Thomas W J 1980 J. Mol. Spectrosc. 84 391
[44] Choi J O, Kuwata K T, Cao Y B and Okumura M 1998 J. Phys. Chem. A 102 503
[45] Isborn C, Claborn K and Kahr B 2007 J. Phys. Chem. A 111 7800
[1] Predicting novel atomic structure of the lowest-energy FenP13-n(n=0-13) clusters: A new parameter for characterizing chemical stability
Yuanqi Jiang(蒋元祺), Ping Peng(彭平). Chin. Phys. B, 2023, 32(4): 047102.
[2] A theoretical study of fragmentation dynamics of water dimer by proton impact
Zhi-Ping Wang(王志萍), Xue-Fen Xu(许雪芬), Feng-Shou Zhang(张丰收), and Xu Wang(王旭). Chin. Phys. B, 2023, 32(3): 033401.
[3] Plasmonic hybridization properties in polyenes octatetraene molecules based on theoretical computation
Nan Gao(高楠), Guodong Zhu(朱国栋), Yingzhou Huang(黄映洲), and Yurui Fang(方蔚瑞). Chin. Phys. B, 2023, 32(3): 037102.
[4] Ferroelectricity induced by the absorption of water molecules on double helix SnIP
Dan Liu(刘聃), Ran Wei(魏冉), Lin Han(韩琳), Chen Zhu(朱琛), and Shuai Dong(董帅). Chin. Phys. B, 2023, 32(3): 037701.
[5] Effects of π-conjugation-substitution on ESIPT process for oxazoline-substituted hydroxyfluorenes
Di Wang(汪迪), Qiao Zhou(周悄), Qiang Wei(魏强), and Peng Song(宋朋). Chin. Phys. B, 2023, 32(2): 028201.
[6] High-order harmonic generation of the cyclo[18]carbon molecule irradiated by circularly polarized laser pulse
Shu-Shan Zhou(周书山), Yu-Jun Yang(杨玉军), Yang Yang(杨扬), Ming-Yue Suo(索明月), Dong-Yuan Li(李东垣), Yue Qiao(乔月), Hai-Ying Yuan(袁海颖), Wen-Di Lan(蓝文迪), and Mu-Hong Hu(胡木宏). Chin. Phys. B, 2023, 32(1): 013201.
[7] First-principles study of a new BP2 two-dimensional material
Zhizheng Gu(顾志政), Shuang Yu(于爽), Zhirong Xu(徐知荣), Qi Wang(王琪), Tianxiang Duan(段天祥), Xinxin Wang(王鑫鑫), Shijie Liu(刘世杰), Hui Wang(王辉), and Hui Du(杜慧). Chin. Phys. B, 2022, 31(8): 086107.
[8] Adaptive semi-empirical model for non-contact atomic force microscopy
Xi Chen(陈曦), Jun-Kai Tong(童君开), and Zhi-Xin Hu(胡智鑫). Chin. Phys. B, 2022, 31(8): 088202.
[9] Collision site effect on the radiation dynamics of cytosine induced by proton
Xu Wang(王旭), Zhi-Ping Wang(王志萍), Feng-Shou Zhang(张丰收), and Chao-Yi Qian (钱超义). Chin. Phys. B, 2022, 31(6): 063401.
[10] First principles investigation on Li or Sn codoped hexagonal tungsten bronzes as the near-infrared shielding material
Bo-Shen Zhou(周博深), Hao-Ran Gao(高浩然), Yu-Chen Liu(刘雨辰), Zi-Mu Li(李子木),Yang-Yang Huang(黄阳阳), Fu-Chun Liu(刘福春), and Xiao-Chun Wang(王晓春). Chin. Phys. B, 2022, 31(5): 057804.
[11] Laser-induced fluorescence experimental spectroscopy and theoretical calculations of uranium monoxide
Xi-Lin Bai(白西林), Xue-Dong Zhang(张雪东), Fu-Qiang Zhang(张富强), and Timothy C Steimle. Chin. Phys. B, 2022, 31(5): 053301.
[12] Tunable electronic properties of GaS-SnS2 heterostructure by strain and electric field
Da-Hua Ren(任达华), Qiang Li(李强), Kai Qian(钱楷), and Xing-Yi Tan(谭兴毅). Chin. Phys. B, 2022, 31(4): 047102.
[13] Insights into the adsorption of water and oxygen on the cubic CsPbBr3 surfaces: A first-principles study
Xin Zhang(张鑫), Ruge Quhe(屈贺如歌), and Ming Lei(雷鸣). Chin. Phys. B, 2022, 31(4): 046401.
[14] Influence of intramolecular hydrogen bond formation sites on fluorescence mechanism
Hong-Bin Zhan(战鸿彬), Heng-Wei Zhang(张恒炜), Jun-Jie Jiang(江俊杰), Yi Wang(王一), Xu Fei(费旭), and Jing Tian(田晶). Chin. Phys. B, 2022, 31(3): 038201.
[15] Advances and challenges in DFT-based energy materials design
Jun Kang(康俊), Xie Zhang(张燮), and Su-Huai Wei(魏苏淮). Chin. Phys. B, 2022, 31(10): 107105.
No Suggested Reading articles found!