Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(4): 040201    DOI: 10.1088/1674-1056/19/4/040201
GENERAL   Next  

The extended symmetry approach for studying the general Korteweg-de Vries-type equation

Li Zhi-Fang(李志芳) and Ruan Hang-Yu(阮航宇)
Department of Physics, Ningbo University, Ningbo 315211, China
Abstract  The extended symmetry approach is used to study the general Korteweg-de Vries-type (KdV-type) equation. Several variable-coefficient equations are obtained. The solutions of these resulting equations can be constructed by the solutions of original models if their solutions are well known, such as the standard constant coefficient KdV equation and the standard compound KdV--Burgers equation, and so on. Then any one of these variable-coefficient equations can be considered as an original model to obtain new variable-coefficient equations whose solutions can also be known by means of transformation relations between solutions of the resulting new variable-coefficient equations and the original equation.
Keywords:  extended symmetry approach      general Korteweg-de Vries-type (KdV-type) equation      variable-coefficient equation  
Received:  08 August 2009      Revised:  08 September 2009      Accepted manuscript online: 
PACS:  05.45.Yv (Solitons)  
  02.30.Jr (Partial differential equations)  
  02.20.Sv (Lie algebras of Lie groups)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No.~10675065) and the Scientific Research Fund of the Education Department of Zhejiang Province of China (Grant No.~20070979).

Cite this article: 

Li Zhi-Fang(李志芳) and Ruan Hang-Yu(阮航宇) The extended symmetry approach for studying the general Korteweg-de Vries-type equation 2010 Chin. Phys. B 19 040201

[1] Akhmediev N N and Mitzkevich N V 1991 IEEE Journal of Quantum Electronics 27 0018
[2] Haus H A 1993 Proceedings of the IEEE 81 0018
[3] Burtsev S, Kaup D J and Malomed B A 1995 Phys. Rev. E 52 1063
[4] Davydov A S 1979 Int. J. Quantum Chem. 16 5
[5] Fann W, Rothberg L, Roberson M, Benson S, Madey J, Etermad S and Austin R 1990 Phys. Rev. Lett. 64 607
[6] Ludu A, Ionescu R A and Greiner W 1996 Foundations of Physics 26 0015
[7] Wu J H, Liu Y R and Feng M 1999 Commun. Theor. Phys. 32 253
[8] Sakamoto W, Kosugi K, Yogo T and Hirano S I 1999 Jpn. J. Appl. Phys. 38 0021
[9] Ghosh S and Nandy S 1999 Nucl. Phys. B 561 0550
[10] Gu C H 1992 Lett. Math. Phys. 26 199
[11] Zha Q L and Li Z B 2008 Chin. Phys. B 17 2333
[12] Zhang S L, Lou S Y and Qu C Z 2006 Chin. Phys. 15 2765
[13] Yao R X, Jiao X Y and Lou S Y 2009 Chin. Phys. B 18 1821
[14] Zhu J M and Zhen C L 2004 Chin. Phys. 13 2008
[15] Mao J J and Yang J R 2006 Chin. Phys. 15 2804
[16] Chen H T and Zhang H Q 2003 Chin. Phys. 12 1202
[17] Ruan H Y and Chen Y X 2003 Math. Meth. Appl. Sci. 26:000-000(DOI:10.1002/mma.445)
[18] Vlieg-Hulstman M and Halford W D 1995 Comput. Mash. Appl. 29 3947
[19] Weiss J, Tabor M and Carnevale G 1983 J. Math. Phys. 24 522
[20] Johnson R S 1980 J. Fluid Mech. 97 701
[21] Huang J N, Xu J Z and Xiong Y T 2004 Solitons Concepts, Principles and Applications (Beijing: Higher Education Press) p.59 (in Chinese)
[22] Wadati M 1975 J. Phys. Soc. Jpn. 38 673
[23] Bona J L and Schonbek M E 1985 Proc. R. Soc. Edinb. 101 207
[24] Pego R L and Weinstein M I 1985 Proc. R. Soc. London A 340 47
[25] Pego R L, Smereka P and Weinstein M I 1993 Physica D 67 45
[26] Dey B 1986 J. Phys. A 19 L9
[27] Wang M L 1996 Phys. Lett. A 213 279
[28] Parkes E J and Duffy B R 1997 Phys. Lett. A 229 217
[29] Feng Z 2002 J Phys. A: Math. Gen. 35 343
[30] Joshi N, Petersen J A and Schubert L M 2000 Stud. Appl. Math. 105 361
[31] Pelinovsky D E and Grimshav R H J 1996 Physica D 98 139
[32] Xia T C, Zhang H Q and Yan Z Y 2001 Chin. Phys. 10 694
[1] Modulational instability of a resonantly polariton condensate in discrete lattices
Wei Qi(漆伟), Xiao-Gang Guo(郭晓刚), Liang-Wei Dong(董亮伟), and Xiao-Fei Zhang(张晓斐). Chin. Phys. B, 2023, 32(3): 030502.
[2] All-optical switches based on three-soliton inelastic interaction and its application in optical communication systems
Shubin Wang(王树斌), Xin Zhang(张鑫), Guoli Ma(马国利), and Daiyin Zhu(朱岱寅). Chin. Phys. B, 2023, 32(3): 030506.
[3] Soliton molecules, T-breather molecules and some interaction solutions in the (2+1)-dimensional generalized KDKK equation
Yiyuan Zhang(张艺源), Ziqi Liu(刘子琪), Jiaxin Qi(齐家馨), and Hongli An(安红利). Chin. Phys. B, 2023, 32(3): 030505.
[4] Matrix integrable fifth-order mKdV equations and their soliton solutions
Wen-Xiu Ma(马文秀). Chin. Phys. B, 2023, 32(2): 020201.
[5] Localized nonlinear waves in a myelinated nerve fiber with self-excitable membrane
Nkeh Oma Nfor, Patrick Guemkam Ghomsi, and Francois Marie Moukam Kakmeni. Chin. Phys. B, 2023, 32(2): 020504.
[6] Quantitative analysis of soliton interactions based on the exact solutions of the nonlinear Schrödinger equation
Xuefeng Zhang(张雪峰), Tao Xu(许韬), Min Li(李敏), and Yue Meng(孟悦). Chin. Phys. B, 2023, 32(1): 010505.
[7] Charge self-trapping in two strand biomolecules: Adiabatic polaron approach
D Chevizovich, S Zdravković, A V Chizhov, and Z Ivić. Chin. Phys. B, 2023, 32(1): 010506.
[8] Reciprocal transformations of the space-time shifted nonlocal short pulse equations
Jing Wang(王静), Hua Wu(吴华), and Da-Jun Zhang(张大军). Chin. Phys. B, 2022, 31(12): 120201.
[9] Riemann-Hilbert approach and N double-pole solutions for a nonlinear Schrödinger-type equation
Guofei Zhang(张国飞), Jingsong He(贺劲松), and Yi Cheng(程艺). Chin. Phys. B, 2022, 31(11): 110201.
[10] Fusionable and fissionable waves of (2+1)-dimensional shallow water wave equation
Jing Wang(王静), Xue-Li Ding(丁学利), and Biao Li(李彪). Chin. Phys. B, 2022, 31(10): 100502.
[11] Oscillation properties of matter-wave bright solitons in harmonic potentials
Shu-Wen Guan(关淑文), Ling-Zheng Meng(孟令正), and Li-Chen Zhao(赵立臣). Chin. Phys. B, 2022, 31(8): 080506.
[12] Quantum fields presentation and generating functions of symplectic Schur functions and symplectic universal characters
Denghui Li(李登慧), Fei Wang(王菲), and Zhaowen Yan(颜昭雯). Chin. Phys. B, 2022, 31(8): 080202.
[13] Solutions of novel soliton molecules and their interactions of (2 + 1)-dimensional potential Boiti-Leon-Manna-Pempinelli equation
Hong-Cai Ma(马红彩), Yi-Dan Gao(高一丹), and Ai-Ping Deng(邓爱平). Chin. Phys. B, 2022, 31(7): 070201.
[14] Nonlinear dynamical wave structures of Zoomeron equation for population models
Ahmet Bekir and Emad H M Zahran. Chin. Phys. B, 2022, 31(6): 060401.
[15] A nonlocal Boussinesq equation: Multiple-soliton solutions and symmetry analysis
Xi-zhong Liu(刘希忠) and Jun Yu(俞军). Chin. Phys. B, 2022, 31(5): 050201.
No Suggested Reading articles found!