Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(3): 037701    DOI: 10.1088/1674-1056/19/3/037701
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Ferroelectric and dielectric properties of La/Mn co-doped Bi4Ti3O12 ceramics

Wu Yun-Yi(吴云翼), Wang Xiao-Hui(王晓慧), and Li Long-Tu(李龙土)
State Key Laboratory of New Ceramics and Fine Processing, Department of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
Abstract  La/Mn co-doped Bi4Ti3O12 ceramics, Bi3.25La0.75Ti3-xMnxO12 (= 0.02, 0.04, 0.06, 0.08), were prepared by the solid-state reaction method. The influence of manganese substitution for the titanium part in Bi3.25La0.75Ti3O12 on the sintering behaviour, microstructure, Raman spectra and electrical properties was investigated. The experimental results show that the phase composition of all samples with and without manganese doping, sintered at 1000 °C, consists of a single phase with a bismuth-layered structure belonging to the crystalline phase Bi4Ti3O12. There is no evidence of any impurity phase, but a small change in crystallographic orientation is observed. The Curie temperature of Bi3.25La0.75Ti3-xMnxO12 ceramics is steadily shifted to lower temperature with increasing Mn-doping content. Moreover, the remnant polarisation (Pr) of Bi3.25La0.75Ti3-xMnxO12 samples increases with Mn-doping content, and the Bi3.25La0.75Ti2.92Mn0.08O12 sample exhibits the largest Pr of 16.6 μC/cm2.
Keywords:  bismuth titanate      ceramics      doping      ferroelectric  
Received:  17 July 2008      Revised:  16 September 2009      Accepted manuscript online: 
PACS:  77.80.Bh  
  77.84.Dy  
  77.22.Ej (Polarization and depolarization)  
  81.20.Ev (Powder processing: powder metallurgy, compaction, sintering, mechanical alloying, and granulation)  
  61.72.up (Other materials)  
  78.30.Hv (Other nonmetallic inorganics)  
Fund: Project supported by the National Science Fund for Distinguished Young Scholars (Grant No.~50625204), National Natural Science Fund for Creative Research Groups (Grant No.~50621201), and by the Ministry of Science and Technology of China through National Basic Research Program of China (Grant No.~ 2009CB623301) and through National High Technology Research and Development Program of China (Grant No.~2006AA03Z428).

Cite this article: 

Wu Yun-Yi(吴云翼), Wang Xiao-Hui(王晓慧), and Li Long-Tu(李龙土) Ferroelectric and dielectric properties of La/Mn co-doped Bi4Ti3O12 ceramics 2010 Chin. Phys. B 19 037701

[1] Scott J F 1999 Jpn. J. Appl. Phys. 38 2272
[2] Zhu Z Y, Wang B, Wang H, Zheng Y and Li Q K 2007Chin. Phys. 16 1780
[3] Paz de Araujo C A, Cuchlaro J D, McMillan L D, Scott M C andScott J F 1995 Nature 374 627
[4] Scott J F 2000 Ferroelectric Memories (Berlin: SpringerPress) p46
[5] Li J J, Yu J, Li J, Yang W M, Wu Y Y and Wang Y B 2009 ActaPhys. Sin. 58 1246 (in Chinese)
[6] Scott J F and Paz de Araujo C A 1989 Science 246 1400
[7] Kato K, Zheng C, Finder J M, Dey S K and Torii Y 1998 J. Am. Ceram. Soc. 81 1869
[8] Guo D Y, Wang Y B, Yu J, Gao J X and Li M Y 2006 ActaPhys. Sin. 55 5551 (in Chinese)
[9] Tan C B, Zhong X L, Wang J B, Liao M, Zhou Y C and Pan W 2007Acta Phys. Sin. 56 6084 (in Chinese)
[10] Park P H, Kang B B, Bu S D, Noh T W, Lee J and Jo W 1999 Nature 401 682
[11] Noguchi Y and Miyayama M 2001 Appl. Phys. Lett. 78 1903
[12] Kim J K, Kim J, Song T K and Kim S S 2002 Thin Solid Films 419 225
[13] Sakai T, Watanabe T, Osada M, Kakihana M, Noguchi Y, Miyayama Mand Funakubo H 2003 Jpn. J. Appl. Phys. 42 2850
[14] Wang X S and Ishiwara H 2003 Appl. Phys. Lett. 82 2479
[15] Zhang S T, Chen Y F, Wang J, Cheng G X, Liu Z G and Min N B 2004 Appl. Phys. Lett. 84 3660
[16] Watanabe T, Funakubo H, Osada M, Noguchi Y and Miyayama M 2002 Appl. Phys. Lett. 80 100
[17] Li W, Yin Y, Su D and Zhu J S 2005 J. Appl. Phys. 97 084102
[18] Zhang Q and Whatmore R W 2003 J. Appl. Phys. 94 5228
[19] Jain M, Majumder S B, Katiyar R S, Miranda F A and van Keuls FW 2003 Appl. Phys. Lett. 82 1911
[20] Yuan Z, Lin Y, Weaver J, Chen X, Chen C L, Subramanyam G, Jiang J C and Meletis E I 2005 Appl. Phys. Lett. 87 152901
[21] Zhong X L, Wang J B, Sun L Z, Tan C B, Zheng X J and Zhou Y C2007 Appl. Phys. Lett. 90 012906
[22] Kim J P, Hwang J Y, Cho C R, Ryu M K, Jang M S and Jeong S Y2004 Jpn. J. Appl. Phys. 43 6590-3
[23] Tomar M S, Melgarelo R E, Hidalgo A, Mazumder S B and Katiyar RS 2003 Appl. Phys. Lett. 83 341
[24] Kojima S, Imaizumi R, Hamazake S and Takashige M 1994 Jpn.J. Appl. Phys. 33 5559
[25] Idink H, Srikanth V, White W B and Subbarao E C 1994 J. Appl. Phys. 76 1819
[26] Sugita N, Tokuitsu E, Osada M and Kakihana M 2003 Jpn. J. Appl. Phys. Part 2 42 L944
[27] Liu H L, Yoon S, Cooper S L, Cheng S W, Han P D and Payne D A 1998 Phys. Rev. B 58 10115
[28] Xu T X, Shen J Y, Bo Z M, Fangand C X and Qu Y F 1993 Electron Ceramic Materials (Tianjin: Tianjin University Press)p148
[29] Shimakawa Y, Kubo Y, Nakagawa Y, Goto S, Kamiyama T, Asano Hand Izumi F 2000 Phys. Rev. B 61 6559
[30] Singh N K, Choudhary R N P and Panigrahi A 2002 Mater. Lett. 57 36
[31] Kan Y M, Jin X H, Zhang G J, Wang P L, Cheng Y B and Yan D S 2004 J. Mater. Chem. 14 3566
[32] Jiang Q Y, Subbarao E C and Cross L E 1994 J. Appl. Phys. 75 7433
[33] Singh S K and Ishiwara H 2006 Solid State Commun. 140 430
[34] Wang X S and Ishiwara H 2002 Appl. Phys. Lett. 82 2479
[1] Strain engineering and hydrogen effect for two-dimensional ferroelectricity in monolayer group-IV monochalcogenides MX (M =Sn, Ge; X=Se, Te, S)
Maurice Franck Kenmogne Ndjoko, Bi-Dan Guo(郭必诞), Yin-Hui Peng(彭银辉), and Yu-Jun Zhao(赵宇军). Chin. Phys. B, 2023, 32(3): 036802.
[2] Ferroelectricity induced by the absorption of water molecules on double helix SnIP
Dan Liu(刘聃), Ran Wei(魏冉), Lin Han(韩琳), Chen Zhu(朱琛), and Shuai Dong(董帅). Chin. Phys. B, 2023, 32(3): 037701.
[3] Suppression and compensation effect of oxygen on the behavior of heavily boron-doped diamond films
Li-Cai Hao(郝礼才), Zi-Ang Chen(陈子昂), Dong-Yang Liu(刘东阳), Wei-Kang Zhao(赵伟康),Ming Zhang(张鸣), Kun Tang(汤琨), Shun-Ming Zhu(朱顺明), Jian-Dong Ye(叶建东),Rong Zhang(张荣), You-Dou Zheng(郑有炓), and Shu-Lin Gu(顾书林). Chin. Phys. B, 2023, 32(3): 038101.
[4] A novel monoclinic phase and electrically tunable magnetism of van der Waals layered magnet CrTe2
Qidi Ren(任启迪), Kang Lai(赖康), Jiahao Chen(陈家浩), Xiaoxiang Yu(余晓翔), and Jiayu Dai(戴佳钰). Chin. Phys. B, 2023, 32(2): 027201.
[5] Bismuth doping enhanced tunability of strain-controlled magnetic anisotropy in epitaxial Y3Fe5O12(111) films
Yunpeng Jia(贾云鹏), Zhengguo Liang(梁正国), Haolin Pan(潘昊霖), Qing Wang(王庆), Qiming Lv(吕崎鸣), Yifei Yan(严轶非), Feng Jin(金锋), Dazhi Hou(侯达之), Lingfei Wang(王凌飞), and Wenbin Wu(吴文彬). Chin. Phys. B, 2023, 32(2): 027501.
[6] Designing a P2-type cathode material with Li in both Na and transition metal layers for Na-ion batteries
Jianxiang Gao(高健翔), Kai Sun(孙凯), Hao Guo(郭浩), Zhengyao Li(李正耀), Jianlin Wang(王建林), Xiaobai Ma(马小柏), Xuedong Bai(白雪东), and Dongfeng Chen(陈东风). Chin. Phys. B, 2022, 31(9): 098201.
[7] Efficiently enhanced energy storage performance of Ba2Bi4Ti5O18 film by co-doping Fe3+ and Ta5+ ion with larger radius
Qiong Wu(吴琼), Lei Zhao(赵雷), Xinghao Chen(陈兴豪), and Shifeng Zhao(赵世峰). Chin. Phys. B, 2022, 31(9): 097701.
[8] Impact of AlxGa1-xN barrier thickness and Al composition on electrical properties of ferroelectric HfZrO/Al2O3/AlGaN/GaN MFSHEMTs
Yue Li(李跃), Xingpeng Liu(刘兴鹏), Tangyou Sun(孙堂友), Fabi Zhang(张法碧), Tao Fu(傅涛), Peihua Wang-yang(王阳培华), Haiou Li(李海鸥), and Yonghe Chen(陈永和). Chin. Phys. B, 2022, 31(9): 097307.
[9] Slight Co-doping tuned magnetic and electric properties on cubic BaFeO3 single crystal
Shijun Qin(覃湜俊), Bowen Zhou(周博文), Zhehong Liu(刘哲宏), Xubin Ye(叶旭斌), Xueqiang Zhang(张雪强), Zhao Pan(潘昭), and Youwen Long(龙有文). Chin. Phys. B, 2022, 31(9): 097503.
[10] Computational studies on magnetism and ferroelectricity
Ke Xu(徐可), Junsheng Feng(冯俊生), and Hongjun Xiang(向红军). Chin. Phys. B, 2022, 31(9): 097505.
[11] High-quality CdS quantum dots sensitized ZnO nanotube array films for superior photoelectrochemical performance
Qian-Qian Gong(宫倩倩), Yun-Long Zhao(赵云龙), Qi Zhang(张奇), Chun-Yong Hu(胡春永), Teng-Fei Liu(刘腾飞), Hai-Feng Zhang(张海峰), Guang-Chao Yin(尹广超), and Mei-Ling Sun(孙美玲). Chin. Phys. B, 2022, 31(9): 098103.
[12] Broadband chirped InAs quantum-dot superluminescent diodes with a small spectral dip of 0.2 dB
Hong Wang(王虹), Zunren Lv(吕尊仁), Shuai Wang(汪帅), Haomiao Wang(王浩淼), Hongyu Chai(柴宏宇), Xiaoguang Yang(杨晓光), Lei Meng(孟磊), Chen Ji(吉晨), and Tao Yang(杨涛). Chin. Phys. B, 2022, 31(9): 098104.
[13] Wake-up effect in Hf0.4Zr0.6O2 ferroelectric thin-film capacitors under a cycling electric field
Yilin Li(李屹林), Hui Zhu(朱慧), Rui Li(李锐), Jie Liu(柳杰), Jinjuan Xiang(项金娟), Na Xie(解娜), Zeng Huang(黄增), Zhixuan Fang(方志轩), Xing Liu(刘行), and Lixing Zhou(周丽星). Chin. Phys. B, 2022, 31(8): 088502.
[14] Improving efficiency of inverted perovskite solar cells via ethanolamine-doped PEDOT:PSS as hole transport layer
Zi-Jun Wang(王子君), Jia-Wen Li(李嘉文), Da-Yong Zhang(张大勇), Gen-Jie Yang(杨根杰), and Jun-Sheng Yu(于军胜). Chin. Phys. B, 2022, 31(8): 087802.
[15] Fabrication and investigation of ferroelectric memristors with various synaptic plasticities
Qi Qin(秦琦), Miaocheng Zhang(张缪城), Suhao Yao(姚苏昊), Xingyu Chen(陈星宇), Aoze Han(韩翱泽),Ziyang Chen(陈子洋), Chenxi Ma(马晨曦), Min Wang(王敏), Xintong Chen(陈昕彤), Yu Wang(王宇),Qiangqiang Zhang(张强强), Xiaoyan Liu(刘晓燕), Ertao Hu(胡二涛), Lei Wang(王磊), and Yi Tong(童祎). Chin. Phys. B, 2022, 31(7): 078502.
No Suggested Reading articles found!