CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Influence of Ga+ ion irradiation on the magnetisation reversal process and magnetoresistance in CoFe/Cu/CoFe/IrMn spin valves |
Qi Xian-Jin(祁先进)a), Wang Yin-Gang (王寅岗) a)†, Miao Xue-Fei(缪雪飞)a), Li Zi-Quan(李子全)a), and Huang Yi-Zhong(黄一中) b)c) |
a College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China; b Department of Materials, Oxford University, Oxford OX1 3PH, UK; c School of Materials Science and Engineering, Nanyang Technological University, Singapore |
|
|
Abstract Ga+ ion irradiation is performed on the surfaces of IrMn-based spin valves and the effects of ion irradiation on the magnetisation reversal process and magnetoresistance (MR) are investigated. The results show that the exchange bias field and magnetoresistance ratio of the spin valve decrease with the increase of ion dose. The width of the forward step between the free layer and the pinned layer becomes gradually smaller with the increase of ion dose whilst the recoil step tends to be narrower with ion dose increasing up to 6×1013 ions/cm2 and the step disappears afterwards. Two peaks in the R--H curve are found to be asymmetric.
|
Received: 30 June 2009
Revised: 11 October 2009
Accepted manuscript online:
|
PACS:
|
75.70.Cn
|
(Magnetic properties of interfaces (multilayers, superlattices, heterostructures))
|
|
85.70.Kh
|
(Magnetic thin film devices: magnetic heads (magnetoresistive, inductive, etc.); domain-motion devices, etc.)
|
|
61.80.Jh
|
(Ion radiation effects)
|
|
75.60.Jk
|
(Magnetization reversal mechanisms)
|
|
72.15.Gd
|
(Galvanomagnetic and other magnetotransport effects)
|
|
Fund: Project supported by the National
Natural Science Foundation of China (Grant No.~50671048). |
Cite this article:
Qi Xian-Jin(祁先进), Wang Yin-Gang (王寅岗), Miao Xue-Fei(缪雪飞), Li Zi-Quan(李子全), and Huang Yi-Zhong(黄一中) Influence of Ga+ ion irradiation on the magnetisation reversal process and magnetoresistance in CoFe/Cu/CoFe/IrMn spin valves 2010 Chin. Phys. B 19 037505
|
[1] |
Blomeier S, McGrouther D, O'Neill R, McVitie S, Chapman J N, Weber MC, Hillebrands B and Fassbender J 2005 J. Magn. Magn.Mater. 290-291 731
|
[2] |
Fassbender J and McCord J 2008 J. Magn. Magn. Mater. 320 579
|
[3] |
Zhang K, Gupta R, Müller G A, Schaaf P and Lieb K P 2004 Appl. Phys. Lett. 84 3915
|
[4] |
McGrouther D, Chapman J N and Vanhelmont F W M 2004 J. Appl.Phys. 95 7772
|
[5] |
Xu D Q, Zhang Y M, Zhang Y M, Li P X, Wang C, Lü H L, Tang X Yand Wang Y H 2008 Chin. Phys. B 17 4648
|
[6] |
Chang G S, Moewes A, Kim S H, Lee J, Jeong K, Whang C N, Kim D H andShin S C 2006 Appl. Phys. Lett. 88 092504
|
[7] |
Bera S, Roy S, Bhattacharjee K, Kun G and Dev B N 2007 J.Appl. Phys. 102 014308
|
[8] |
Fu W J, Liu Z W, Liu M, Mu Z X, Zhang Q Y, Guan Q F and Chen K M2009 Acta Phys. Sin. 58 5693 (in Chinese)
|
[9] |
Xue S W, Zu X T, Su H Q, Zheng W G, Xiang X, Deng H and Yang C R2007 Chin. Phys. 16 1119
|
[10] |
Kerr E, Dijken S van, Langford R M and Coey J M D 2005 J.Magn. Magn. Mater. 290-291 124
|
[11] |
Wang Y G, McGrouther D, McVitie S, Mackenzie M and Chapman J N 2006 J. Appl. Phys. 100 073901
|
[12] |
Liu Z Y and Adenwalla S 2003 J. Appl. Phys. 93 3422
|
[13] |
Dantas Ana L, Rebou\c{c as G O G, Silva A S W T and Carri\c{c o A S2005 J. Appl. Phys. 97 10K105
|
[14] |
Solina D M, Liedke M O, Tietze U, Fassbender J and Schreyer A 2005 J. Magn. Magn. Mater. 286 225
|
[15] |
Schafer D, Geshev J, Nicolodi S, Pereira L G, Schmidt J E and GrandeP L 2008 Appl. Phys. Lett. 93 042501
|
[16] |
Han Y, Kim S, Lee S, Hong J, Lee D R, Lee H H, Park Y J and Lee H2008 J. Appl. Phys. 103 07B521
|
[17] |
Mewes T, Lopusnik R, Fassbender J, Hillebrands B, Jung M, Engel D,Ehresmann A and Schmoranzer H 2000 Appl. Phys. Lett.76 1057
|
[18] |
Mougin A, Mewes T, Lopusnik R, Jung M, Engel D, Ehresmann A,Schmoranzer H, Fassbender J and Hillebrands B 2000 IEEETrans. Magn . 36 2647
|
[19] |
Mougin A, Mewes T, Jung M, Engel D, Ehresmann A, Schmoranzer H,Fassbender J and Hillebrands B 2001 Phys. Rev. B.63 060409
|
[20] |
Lin J G, Wu M R, Ngu D H, Huang C Y and Mao S 2000 J. Magn.Magn. Mater. 209 128
|
[21] |
Guo Z B, You D, Qiu J J, Li K B and Wu Y H 2001 Solid StateCommun. 120 459
|
[22] |
Lu Z H, Li T, Qiu J J, Xun K, Shen H L, Li Z Y and Shen D F 1999 Chin. Phys. Lett. 16 65
|
[23] |
Stobiecki T, Kanak J, Wrona J, Reiss G and Brückl H 2007 J. Magn. Magn. Mater. 316 998
|
[24] |
Kaoumi D, Motta A T and Birtcher R C 2006 Nucl. Instrum.Meth. B 242 490
|
[25] |
Kaoumi D, Motta A T and Birtcher R C 2008 J. Appl. Phys.104 073525
|
[26] |
Olligs D, Bürgler D E, Wang Y G, Kentzinger E, Rücker U,Schreiber R, Brückel T and Grünberg P 2002 Europhys.Lett. 59 458
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|