|
|
Electronic cluster state entanglement concentration based on charge detection |
Liu Jiong (刘炯)a c, Zhao Sheng-Yang (赵圣阳)a c, Zhou Lan (周澜)a b, Sheng Yu-Bo (盛宇波)a c |
a Key Laboratory of Broadband Wireless Communication and Sensor Network Technology, Nanjing University of Posts and Telecommunications, Ministry of Education, Nanjing 210003, China; b College of Mathematics & Physics, Nanjing University of Posts and Telecommunications, Nanjing 210003, China; c Institute of Signal Processing Transmission, Nanjing University of Posts and Telecommunications, Nanjing 210003, China |
|
|
Abstract We propose an efficient entanglement concentration protocol (ECP) based on electron-spin cluster states assisted with single electrons. In the ECP, we adopt the electron polarization beam splitter (PBS) and the charge detector to construct the quantum nondemolition measurement. According to the result of the measurement of the charge detection, we can ultimately obtain the maximally entangled cluster states. Moreover, the discarded items can be reused in the next round to reach a high success probability. This ECP may be useful in current solid quantum computation.
|
Received: 19 May 2013
Revised: 16 July 2013
Accepted manuscript online:
|
PACS:
|
03.67.Hk
|
(Quantum communication)
|
|
03.65.Ud
|
(Entanglement and quantum nonlocality)
|
|
03.67.Lx
|
(Quantum computation architectures and implementations)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11104159 and 11347110), the University Natural Science Research Project of Jiangsu Province of China (Grant No. 13KJB140010), the Open Research Fund Program of National Laboratory of Solid State Microstructures, Nanjing University (Grant No. M25022), the Open Research Fund of Key Laboratory of Broadband Wireless Communication and Sensor Network Technology, Nanjing University of Posts and Telecommunications, Ministry of Education (Grant No. NYKL201303), and the Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions. |
Corresponding Authors:
Sheng Yu-Bo
E-mail: shengyb@njupt.edu.cn
|
About author: 03.67.Hk; 03.65.Ud; 03.67.Lx |
Cite this article:
Liu Jiong (刘炯), Zhao Sheng-Yang (赵圣阳), Zhou Lan (周澜), Sheng Yu-Bo (盛宇波) Electronic cluster state entanglement concentration based on charge detection 2014 Chin. Phys. B 23 020313
|
[1] |
Bennett C H, Brassard G, Crepeau C, Jozsa R, Peres A and Wootters W K 1993 Phys. Rev. Lett. 70 1895
|
[2] |
Karlsson A and Bourennane M 1998 Phys. Rev. A 58 4394
|
[3] |
Deng F G, Li C Y, Li Y S, Zhou H Y and Wang Y 2005 Phys. Rev. A 72 022338
|
[4] |
Long G L and Liu X S 2002 Phys. Rev. A 65 032302
|
[5] |
Deng F G, Long G L and Liu X S 2003 Phys. Rev. A 68 042317
|
[6] |
Wang C, Deng F G, Li Y S, Liu X S and Long G L 2005 Phys. Rev. A 71 042305
|
[7] |
Man Z X, Zhang Z J and Li Y 2005 Chin. Phys. Lett. 22 18
|
[8] |
Gao T, Yan F L and Wang Z X 2005 Chin. Phys. 14 893
|
[9] |
Li X H, Deng F G and Zhou H Y 2006 Phys. Rev. A 74 054302
|
[10] |
Gu B, Huang Y G, Fang X and Zhang C Y 2011 Chin. Phys. B 20 100309
|
[11] |
Ekert A K 1991 Phys. Rev. Lett. 67 661
|
[12] |
Deng F G and Long G L 2003 Phys. Rev. A 68 042315
|
[13] |
Li X H, Deng F G and Zhou H Y 2008 Phys. Rev. A 78 022321
|
[14] |
Li X H, Li C Y, Deng F G, Zhou P, Liang Y J and Zhou H Y 2007 Chin. Phys. 16 2149
|
[15] |
Deng F G, Liu X S, Ma Y J, Xiao L and Long G L 2002 Chin. Phys. Lett. 19 893
|
[16] |
Gu B, Li C Q, Xu F and Chen Y L 2009 Chin. Phys. B 18 4690
|
[17] |
Gu B, Li C Q and Chen Y L 2009 Chin. Phys. B 18 2137
|
[18] |
Deng F G, Long G L and Chen P 2006 Chin. Phys. 15 2228
|
[19] |
Raussendorf R and Briegel H J 2001 Phys. Rev. Lett. 86 5188
|
[20] |
Deutsch D 1989 Proc. R. Soc. Lond. A 425 73
|
[21] |
Knill E, Laflamme R and Miburn G J 2001 Nature 409 46
|
[22] |
Nielsen M A 2004 Phys. Rev. Lett. 93 040503
|
[23] |
Nielsen M A 2006 Rep. Math. Phys. 57 147
|
[24] |
Daniel K and Kai P S 2012 Phys. Rev. Lett. 108 230508
|
[25] |
Chen K, Li C M, Zhang Q, Chen Y A, Goebel A, Chen S, Mair A and Pan J W 2007 Phys. Rev. Lett. 99 120503
|
[26] |
Tokunaga Y, Kuwashiro S, Yamamoto T, Koashi M and Imoto N 2008 Phys. Rev. Lett. 100 210501
|
[27] |
Gao W B, Xu P, Yao X C, Gühen O, Cabello A, Lu C Y, Peng C Z, Chen Z B and Pan J W 2010 Phys. Rev. Lett. 104 020501
|
[28] |
Cho J and Lee H W 2005 Phys. Rev. Lett. 95 160501
|
[29] |
Horsman C, Brown K L, Munro W J and Kendon V M 2011 Phys. Rev. A 83 042307
|
[30] |
Su S L, Wang Y, Guo Q, Wang H F and Zhang S 2012 Chin. Phys. B 21 044205
|
[31] |
Ai L Y, Shi Y L and Zhang Z M 2011 Chin. Phys. B 20 100303
|
[32] |
Beenakker C W J, DiVincenzo D P, Emary C and Kindermann M 2004 Phys. Rev. Lett. 93 020501
|
[33] |
Terhal B M and DiVincenzo D P 2002 Phys. Rev. A 65 032325
|
[34] |
Field M, Smith C G, Pepper M, Pitchie D A, Frost J E F, Jones G A C and Hasko D G 1993 Phys. Rev. Lett. 70 1311
|
[35] |
Feng X L, Kwek L C and Oh C H 2005 Phys. Rev. A 71 064301
|
[36] |
Sheng Y B, Deng F G and Long G L 2011 Phys. Lett. A 375 396
|
[37] |
Li T, Ren B C, Wei H R, Hua M and Deng F G 2013 Quantum. Inf. Process. 12 855
|
[38] |
Sheng Y B, Deng F G and Zhou H Y 2009 Phys. Lett. A 373 1823
|
[39] |
Ren B C, Hua M, Li T, Du F F and Deng F G 2012 Chin. Phys. B 21 090303
|
[40] |
Zhou L 2013 Quantum. Inf. Process. 12 2087
|
[41] |
Zhang X L, Feng M and Gao K L 2006 Phys. Rev. A 73 014301
|
[42] |
Ionicioiu R 2007 Phys. Rev. A 75 032339
|
[43] |
Chiu Y J, Chen X and Chuang I L 2013 Phys. Rev. A 87 012305
|
[44] |
Bennett C H, Bernstein H J, Popesue S and Schumacher B 1996 Phys. Rev. A 53 2046
|
[45] |
Bose S, Vedral V and Knight P L 1999 Phys. Rev. A 60 194
|
[46] |
Shi B S, Jiang Y K and Guo G C 2000 Phys. Rev. A 62 054301
|
[47] |
Zhao Z, Pan J W and Zhan M S 2001 Phys. Rev. A 64 014301
|
[48] |
Choudhury B S and Dhara A 2013 Quantum. Inf. Process. 12 2577
|
[49] |
Sheng Y B, Deng F G and Zhou H Y 2008 Phys. Rev. A 77 062325
|
[50] |
Sheng Y B, Zhou L, Zhao S M and Zheng B Y 2012 Phys. Rev. A 85 012307
|
[51] |
Sheng Y B, Zhou L and Zhao S M 2012 Phys. Rev. A 85 042302
|
[52] |
Sheng Y B, Deng F G and Zhou H Y 2010 Quantum. Inf. & Comput. 10 272
|
[53] |
Gu B 2012 J. Opt. Soc. Am. B 29 1685
|
[54] |
Zhou L, Sheng Y B and Zhao S M 2013 Chin. Phys. B 22 020307
|
[55] |
Zhou L, Sheng Y B, Cheng W W, Gong L Y and Zhao S M 2013 J. Opt. Soc. Am. B 30 2737
|
[56] |
Zhou L, Sheng Y B, Cheng W W, Gong L Y and Zhao S M 2013 Quantum. Inf. Process. 12 1307
|
[57] |
Du F F, Li T, Ren B C, Wei H R and Deng F G 2012 J. Opt. Soc. Am. B 29 1399
|
[58] |
Deng F G 2012 Phys. Rev. A 85 022311
|
[59] |
Wang H F, Zhang S and Yeon K H 2010 J. Opt. Soc. Am. B 27 2159
|
[60] |
Wang H F, Sun L L, Zhang S and Yeon K H 2012 Quantum. Inf. Process. 11 431
|
[61] |
Si B, Su S L, Sun L L, Cheng L Y, Wang H F and Zhang S 2013 Chin. Phys. B 22 030305
|
[62] |
Xu T T, Xiong W and Ye L 2012 Mod. Phys. Lett. B 26 1250214
|
[63] |
Wang C 2012 Phys. Rev. A 86 012323
|
[64] |
Sheng Y B and Zhou L 2013 J. Opt. Soc. Am. B 30 678
|
[65] |
Sheng Y B, Zhou L, Wang L and Zhao S M 2013 Quantum. Inf. Process. 12 1885
|
[66] |
Cao C, Wang C and Zhang R 2012 Chin. Phys. B 21 110305
|
[67] |
Peng Z H, Zou J, Liu X J, Xiao Y J and Kuang L M 2012 Phys. Rev. A 86 034305
|
[68] |
He L Y, Cao C and Wang C 2013 Opt. Commun. 298 260
|
[69] |
Cao C, Wang C, He L Y and Zhang R 2013 Opt. Express 21 4093
|
[70] |
Wang T J and Long G L 2013 J. Opt. Soc. Am. B 30 1069
|
[71] |
Ren B C, Du F F and Deng F G 2013 Phys. Rev. A 88 012302
|
[72] |
Sheng Y B and Zhou L 2013 Entropy 15 1776
|
[73] |
Briegel H J and Raussendorf R 2001 Phys. Rev. Lett. 86 910
|
[74] |
Ionicioiu R and D’Amico I 2003 Phys. Rev. B 67 041307
|
[75] |
Elzerman J M, Hanson R, Willems van Beveren L H, Vandersypen L M K and Kouwenhoven L P 2004 Appl. Phys. Lett. 84 4617
|
[76] |
Shaner E A and Lyon S A 2004 Phys. Rev. Lett. 93 037402
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|