Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(2): 020313    DOI: 10.1088/1674-1056/23/2/020313
GENERAL Prev   Next  

Electronic cluster state entanglement concentration based on charge detection

Liu Jiong (刘炯)a c, Zhao Sheng-Yang (赵圣阳)a c, Zhou Lan (周澜)a b, Sheng Yu-Bo (盛宇波)a c
a Key Laboratory of Broadband Wireless Communication and Sensor Network Technology, Nanjing University of Posts and Telecommunications, Ministry of Education, Nanjing 210003, China;
b College of Mathematics & Physics, Nanjing University of Posts and Telecommunications, Nanjing 210003, China;
c Institute of Signal Processing Transmission, Nanjing University of Posts and Telecommunications, Nanjing 210003, China
Abstract  We propose an efficient entanglement concentration protocol (ECP) based on electron-spin cluster states assisted with single electrons. In the ECP, we adopt the electron polarization beam splitter (PBS) and the charge detector to construct the quantum nondemolition measurement. According to the result of the measurement of the charge detection, we can ultimately obtain the maximally entangled cluster states. Moreover, the discarded items can be reused in the next round to reach a high success probability. This ECP may be useful in current solid quantum computation.
Keywords:  entanglement concentration      quantum computation      cluster states  
Received:  19 May 2013      Revised:  16 July 2013      Accepted manuscript online: 
PACS:  03.67.Hk (Quantum communication)  
  03.65.Ud (Entanglement and quantum nonlocality)  
  03.67.Lx (Quantum computation architectures and implementations)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11104159 and 11347110), the University Natural Science Research Project of Jiangsu Province of China (Grant No. 13KJB140010), the Open Research Fund Program of National Laboratory of Solid State Microstructures, Nanjing University (Grant No. M25022), the Open Research Fund of Key Laboratory of Broadband Wireless Communication and Sensor Network Technology, Nanjing University of Posts and Telecommunications, Ministry of Education (Grant No. NYKL201303), and the Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions.
Corresponding Authors:  Sheng Yu-Bo     E-mail:  shengyb@njupt.edu.cn
About author:  03.67.Hk; 03.65.Ud; 03.67.Lx

Cite this article: 

Liu Jiong (刘炯), Zhao Sheng-Yang (赵圣阳), Zhou Lan (周澜), Sheng Yu-Bo (盛宇波) Electronic cluster state entanglement concentration based on charge detection 2014 Chin. Phys. B 23 020313

[1] Bennett C H, Brassard G, Crepeau C, Jozsa R, Peres A and Wootters W K 1993 Phys. Rev. Lett. 70 1895
[2] Karlsson A and Bourennane M 1998 Phys. Rev. A 58 4394
[3] Deng F G, Li C Y, Li Y S, Zhou H Y and Wang Y 2005 Phys. Rev. A 72 022338
[4] Long G L and Liu X S 2002 Phys. Rev. A 65 032302
[5] Deng F G, Long G L and Liu X S 2003 Phys. Rev. A 68 042317
[6] Wang C, Deng F G, Li Y S, Liu X S and Long G L 2005 Phys. Rev. A 71 042305
[7] Man Z X, Zhang Z J and Li Y 2005 Chin. Phys. Lett. 22 18
[8] Gao T, Yan F L and Wang Z X 2005 Chin. Phys. 14 893
[9] Li X H, Deng F G and Zhou H Y 2006 Phys. Rev. A 74 054302
[10] Gu B, Huang Y G, Fang X and Zhang C Y 2011 Chin. Phys. B 20 100309
[11] Ekert A K 1991 Phys. Rev. Lett. 67 661
[12] Deng F G and Long G L 2003 Phys. Rev. A 68 042315
[13] Li X H, Deng F G and Zhou H Y 2008 Phys. Rev. A 78 022321
[14] Li X H, Li C Y, Deng F G, Zhou P, Liang Y J and Zhou H Y 2007 Chin. Phys. 16 2149
[15] Deng F G, Liu X S, Ma Y J, Xiao L and Long G L 2002 Chin. Phys. Lett. 19 893
[16] Gu B, Li C Q, Xu F and Chen Y L 2009 Chin. Phys. B 18 4690
[17] Gu B, Li C Q and Chen Y L 2009 Chin. Phys. B 18 2137
[18] Deng F G, Long G L and Chen P 2006 Chin. Phys. 15 2228
[19] Raussendorf R and Briegel H J 2001 Phys. Rev. Lett. 86 5188
[20] Deutsch D 1989 Proc. R. Soc. Lond. A 425 73
[21] Knill E, Laflamme R and Miburn G J 2001 Nature 409 46
[22] Nielsen M A 2004 Phys. Rev. Lett. 93 040503
[23] Nielsen M A 2006 Rep. Math. Phys. 57 147
[24] Daniel K and Kai P S 2012 Phys. Rev. Lett. 108 230508
[25] Chen K, Li C M, Zhang Q, Chen Y A, Goebel A, Chen S, Mair A and Pan J W 2007 Phys. Rev. Lett. 99 120503
[26] Tokunaga Y, Kuwashiro S, Yamamoto T, Koashi M and Imoto N 2008 Phys. Rev. Lett. 100 210501
[27] Gao W B, Xu P, Yao X C, Gühen O, Cabello A, Lu C Y, Peng C Z, Chen Z B and Pan J W 2010 Phys. Rev. Lett. 104 020501
[28] Cho J and Lee H W 2005 Phys. Rev. Lett. 95 160501
[29] Horsman C, Brown K L, Munro W J and Kendon V M 2011 Phys. Rev. A 83 042307
[30] Su S L, Wang Y, Guo Q, Wang H F and Zhang S 2012 Chin. Phys. B 21 044205
[31] Ai L Y, Shi Y L and Zhang Z M 2011 Chin. Phys. B 20 100303
[32] Beenakker C W J, DiVincenzo D P, Emary C and Kindermann M 2004 Phys. Rev. Lett. 93 020501
[33] Terhal B M and DiVincenzo D P 2002 Phys. Rev. A 65 032325
[34] Field M, Smith C G, Pepper M, Pitchie D A, Frost J E F, Jones G A C and Hasko D G 1993 Phys. Rev. Lett. 70 1311
[35] Feng X L, Kwek L C and Oh C H 2005 Phys. Rev. A 71 064301
[36] Sheng Y B, Deng F G and Long G L 2011 Phys. Lett. A 375 396
[37] Li T, Ren B C, Wei H R, Hua M and Deng F G 2013 Quantum. Inf. Process. 12 855
[38] Sheng Y B, Deng F G and Zhou H Y 2009 Phys. Lett. A 373 1823
[39] Ren B C, Hua M, Li T, Du F F and Deng F G 2012 Chin. Phys. B 21 090303
[40] Zhou L 2013 Quantum. Inf. Process. 12 2087
[41] Zhang X L, Feng M and Gao K L 2006 Phys. Rev. A 73 014301
[42] Ionicioiu R 2007 Phys. Rev. A 75 032339
[43] Chiu Y J, Chen X and Chuang I L 2013 Phys. Rev. A 87 012305
[44] Bennett C H, Bernstein H J, Popesue S and Schumacher B 1996 Phys. Rev. A 53 2046
[45] Bose S, Vedral V and Knight P L 1999 Phys. Rev. A 60 194
[46] Shi B S, Jiang Y K and Guo G C 2000 Phys. Rev. A 62 054301
[47] Zhao Z, Pan J W and Zhan M S 2001 Phys. Rev. A 64 014301
[48] Choudhury B S and Dhara A 2013 Quantum. Inf. Process. 12 2577
[49] Sheng Y B, Deng F G and Zhou H Y 2008 Phys. Rev. A 77 062325
[50] Sheng Y B, Zhou L, Zhao S M and Zheng B Y 2012 Phys. Rev. A 85 012307
[51] Sheng Y B, Zhou L and Zhao S M 2012 Phys. Rev. A 85 042302
[52] Sheng Y B, Deng F G and Zhou H Y 2010 Quantum. Inf. & Comput. 10 272
[53] Gu B 2012 J. Opt. Soc. Am. B 29 1685
[54] Zhou L, Sheng Y B and Zhao S M 2013 Chin. Phys. B 22 020307
[55] Zhou L, Sheng Y B, Cheng W W, Gong L Y and Zhao S M 2013 J. Opt. Soc. Am. B 30 2737
[56] Zhou L, Sheng Y B, Cheng W W, Gong L Y and Zhao S M 2013 Quantum. Inf. Process. 12 1307
[57] Du F F, Li T, Ren B C, Wei H R and Deng F G 2012 J. Opt. Soc. Am. B 29 1399
[58] Deng F G 2012 Phys. Rev. A 85 022311
[59] Wang H F, Zhang S and Yeon K H 2010 J. Opt. Soc. Am. B 27 2159
[60] Wang H F, Sun L L, Zhang S and Yeon K H 2012 Quantum. Inf. Process. 11 431
[61] Si B, Su S L, Sun L L, Cheng L Y, Wang H F and Zhang S 2013 Chin. Phys. B 22 030305
[62] Xu T T, Xiong W and Ye L 2012 Mod. Phys. Lett. B 26 1250214
[63] Wang C 2012 Phys. Rev. A 86 012323
[64] Sheng Y B and Zhou L 2013 J. Opt. Soc. Am. B 30 678
[65] Sheng Y B, Zhou L, Wang L and Zhao S M 2013 Quantum. Inf. Process. 12 1885
[66] Cao C, Wang C and Zhang R 2012 Chin. Phys. B 21 110305
[67] Peng Z H, Zou J, Liu X J, Xiao Y J and Kuang L M 2012 Phys. Rev. A 86 034305
[68] He L Y, Cao C and Wang C 2013 Opt. Commun. 298 260
[69] Cao C, Wang C, He L Y and Zhang R 2013 Opt. Express 21 4093
[70] Wang T J and Long G L 2013 J. Opt. Soc. Am. B 30 1069
[71] Ren B C, Du F F and Deng F G 2013 Phys. Rev. A 88 012302
[72] Sheng Y B and Zhou L 2013 Entropy 15 1776
[73] Briegel H J and Raussendorf R 2001 Phys. Rev. Lett. 86 910
[74] Ionicioiu R and D’Amico I 2003 Phys. Rev. B 67 041307
[75] Elzerman J M, Hanson R, Willems van Beveren L H, Vandersypen L M K and Kouwenhoven L P 2004 Appl. Phys. Lett. 84 4617
[76] Shaner E A and Lyon S A 2004 Phys. Rev. Lett. 93 037402
[1] High-fidelity universal quantum gates for hybrid systems via the practical photon scattering
Jun-Wen Luo(罗竣文) and Guan-Yu Wang(王冠玉). Chin. Phys. B, 2023, 32(3): 030303.
[2] Analysis and improvement of verifiable blind quantum computation
Min Xiao(肖敏) and Yannan Zhang(张艳南). Chin. Phys. B, 2022, 31(5): 050305.
[3] Optimized quantum singular value thresholding algorithm based on a hybrid quantum computer
Yangyang Ge(葛阳阳), Zhimin Wang(王治旻), Wen Zheng(郑文), Yu Zhang(张钰), Xiangmin Yu(喻祥敏), Renjie Kang(康人杰), Wei Xin(辛蔚), Dong Lan(兰栋), Jie Zhao(赵杰), Xinsheng Tan(谭新生), Shaoxiong Li(李邵雄), and Yang Yu(于扬). Chin. Phys. B, 2022, 31(4): 048704.
[4] Molecular beam epitaxy growth of quantum devices
Ke He(何珂). Chin. Phys. B, 2022, 31(12): 126804.
[5] Quantum simulation and quantum computation of noisy-intermediate scale
Kai Xu(许凯), and Heng Fan(范桁). Chin. Phys. B, 2022, 31(10): 100304.
[6] Quantum computation and simulation with superconducting qubits
Kaiyong He(何楷泳), Xiao Geng(耿霄), Rutian Huang(黄汝田), Jianshe Liu(刘建设), and Wei Chen(陈炜). Chin. Phys. B, 2021, 30(8): 080304.
[7] Quantum computation and simulation with vibrational modes of trapped ions
Wentao Chen(陈文涛), Jaren Gan, Jing-Ning Zhang(张静宁), Dzmitry Matuskevich, and Kihwan Kim(金奇奂). Chin. Phys. B, 2021, 30(6): 060311.
[8] Quantum computation and error correction based on continuous variable cluster states
Shuhong Hao(郝树宏), Xiaowei Deng(邓晓玮), Yang Liu(刘阳), Xiaolong Su(苏晓龙), Changde Xie(谢常德), and Kunchi Peng(彭堃墀). Chin. Phys. B, 2021, 30(6): 060312.
[9] Realization of arbitrary two-qubit quantum gates based on chiral Majorana fermions
Qing Yan(闫青) and Qing-Feng Sun(孙庆丰). Chin. Phys. B, 2021, 30(4): 040303.
[10] Efficient self-testing system for quantum computations based on permutations
Shuquan Ma(马树泉), Changhua Zhu(朱畅华), Min Nie(聂敏), and Dongxiao Quan(权东晓). Chin. Phys. B, 2021, 30(4): 040305.
[11] A proposal for preparation of cluster states with linear optics
Le Ju(鞠乐), Ming Yang(杨名), and Peng Xue(薛鹏). Chin. Phys. B, 2021, 30(3): 030306.
[12] Quantum algorithm for a set of quantum 2SAT problems
Yanglin Hu(胡杨林), Zhelun Zhang(张哲伦), and Biao Wu(吴飙). Chin. Phys. B, 2021, 30(2): 020308.
[13] Low-temperature environments for quantum computation and quantum simulation
Hailong Fu(付海龙), Pengjie Wang(王鹏捷), Zhenhai Hu(胡禛海), Yifan Li(李亦璠), and Xi Lin(林熙). Chin. Phys. B, 2021, 30(2): 020702.
[14] A concise review of Rydberg atom based quantum computation and quantum simulation
Xiaoling Wu(吴晓凌), Xinhui Liang(梁昕晖), Yaoqi Tian(田曜齐), Fan Yang(杨帆), Cheng Chen(陈丞), Yong-Chun Liu(刘永椿), Meng Khoon Tey(郑盟锟), and Li You(尤力). Chin. Phys. B, 2021, 30(2): 020305.
[15] Quantum adiabatic algorithms using unitary interpolation
Shuo Zhang(张硕), Qian-Heng Duan(段乾恒), Tan Li(李坦), Xiang-Qun Fu(付向群), He-Liang Huang(黄合良), Xiang Wang(汪翔), Wan-Su Bao(鲍皖苏). Chin. Phys. B, 2020, 29(1): 010308.
No Suggested Reading articles found!