Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(3): 034208    DOI: 10.1088/1674-1056/19/3/034208
CLASSICAL AREAS OF PHENOMENOLOGY Prev   Next  

Realization of stimulated emission-based detector and its application to antinormally ordered photodetection

Fan Dai-He(樊代和), Bai Yun-Fei(白云飞), Zhang Hai-Long(张海龙), Chen Jun-Jian(陈君鉴), Zhang Jun-Xiang(张俊香), and Gao Jiang-Rui(郜江瑞)
State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Opto-Electronics, Shanxi University, Taiyuan 030006, China
Abstract  Using a stimulated parametric down-conversion process combined with a conventional detector, we theoretically propose a scheme to realize the stimulated emission-based detector, and investigate the antinormally ordered correlation function and Fano factor for the coherent field based on it. Such a detection has advantages over the normally ordered one especially when the intensity of the field is weak.
Keywords:  stimulated emission-based detector      antinormally ordered photodetection  
Received:  23 June 2009      Revised:  01 July 2009      Accepted manuscript online: 
PACS:  42.65.Lm (Parametric down conversion and production of entangled photons)  
  85.60.Gz (Photodetectors (including infrared and CCD detectors))  
  42.50.Ar  
Fund: Project supported in part by the National Natural Science Foundation of China (Grant Nos.~10774096 and 60708010), the National Basic Research Program of China (Grant No.~2006CB921101) and the Research Fund for the Returned Overseas Chinese Scholars of Shanxi Province, China (Grant No.~200713).

Cite this article: 

Fan Dai-He(樊代和), Bai Yun-Fei(白云飞), Zhang Hai-Long(张海龙), Chen Jun-Jian(陈君鉴), Zhang Jun-Xiang(张俊香), and Gao Jiang-Rui(郜江瑞) Realization of stimulated emission-based detector and its application to antinormally ordered photodetection 2010 Chin. Phys. B 19 034208

[1] Loudon R 2000 The Quantum Theory of Light (New York: Oxford University Press)
[2] Ueda M and Kitagawa M 1992 Phys. Rev. Lett. 68 3424
[3] Ueda M, Imoto N and Nagaoka H 1996 Phys. Rev. A 53 3808
[4] Mandel L 1966 Phys. Rev. 152 438
[5] Lee H 1994 Phys. Rev. A 50 2746
[6] Lu N 1990 Phys. Rev. A 42 6756
[7] Brif C and Aryeh Y 1994 Phys. Rev. A 50 2727
[8] Agarwal G 1977 Phys. Rev. A 15 2380
[9] Wang K, Gu Y and Gong Q H 2007 Chin. Phys. 16 130
[10] Li F L, Gao S Y and Zhao Y T 2003 Chin. Phys. 12 872
[11] Bloembergen N 1959 Phys. Rev. Lett. 2 84
[12] Usami K, Nambu Y, Shi B S, Tomita A and Nakamura K 2004 Phys. Rev. Lett. 92 113601
[13] Byer R and Harris S 1968 Phys. Rev. 168 1064
[14] Ou Z Y, Hong C and Mandel L 1987 Opt. Commun. 63 118
[15] Glauber R 1963 Phys. Rev. 131 2766
[16] Walls D and Milburn G 1994 Quantum Optics (Berlin: Springer-Verlag)
[17] Goodman J W 1985 Statistics Optics (New York: A Wiley-Interscience Publication)
[18] Li Y, Zhang Y C, Wang X Y, Wang J M and Zhang T C 2006 Acta Phys. Sin. 55 5579 (in Chinese)
[1] Security of the traditional quantum key distribution protocolswith finite-key lengths
Bao Feng(冯宝), Hai-Dong Huang(黄海东), Yu-Xiang Bian(卞宇翔), Wei Jia(贾玮), Xing-Yu Zhou(周星宇), and Qin Wang(王琴). Chin. Phys. B, 2023, 32(3): 030307.
[2] Bright 547-dimensional Hilbert-space entangled resource in 28-pair modes biphoton frequency comb from a reconfigurable silicon microring resonator
Qilin Zheng(郑骑林), Jiacheng Liu(刘嘉成), Chao Wu(吴超), Shichuan Xue(薛诗川), Pingyu Zhu(朱枰谕), Yang Wang(王洋), Xinyao Yu(于馨瑶), Miaomiao Yu(余苗苗), Mingtang Deng(邓明堂), Junjie Wu(吴俊杰), and Ping Xu(徐平). Chin. Phys. B, 2022, 31(2): 024206.
[3] High-energy picosecond single-pass multi-stage optical parametric generator and amplifier
Yang Yu(余洋), Zhao Liu(刘钊), Ke Liu(刘可), Chao Ma(马超), Hong-Wei Gao(高宏伟), Xiao-Jun Wang(王小军), Yong Bo(薄勇), Da-Fu Cui(崔大复), and Qin-Jun Peng(彭钦军). Chin. Phys. B, 2022, 31(1): 014204.
[4] Practical decoy-state BB84 quantum key distribution with quantum memory
Xian-Ke Li(李咸柯), Xiao-Qian Song(宋小谦), Qi-Wei Guo(郭其伟), Xing-Yu Zhou(周星宇), and Qin Wang(王琴). Chin. Phys. B, 2021, 30(6): 060305.
[5] One-decoy state reference-frame-independent quantum key distribution
Xiang Li(李想), Hua-Wei Yuan(远华伟), Chun-Mei Zhang(张春梅), Qin Wang(王琴). Chin. Phys. B, 2020, 29(7): 070303.
[6] A two-mode squeezed light based on a double-pump phase-matching geometry
Xuan-Jian He(何烜坚), Jun Jia(贾俊), Gao-Feng Jiao(焦高锋), Li-Qing Chen(陈丽清), Chun-Hua Yuan(袁春华), Wei-Ping Zhang(张卫平). Chin. Phys. B, 2020, 29(7): 074207.
[7] Analysis of third and one-third harmonic generation in lossy waveguides
Jianyu Zhang(张剑宇), Yunxu Sun(孙云旭), Qinghai Song(宋清海). Chin. Phys. B, 2019, 28(6): 064206.
[8] Tripartite continuous-variable entanglement of NOPA system
Chao-Ying Zhao(赵超樱), Cheng-Mei Zhang(张成梅). Chin. Phys. B, 2018, 27(8): 084204.
[9] Experimentally testing Hardy's theorem on nonlocality with entangled mixed states
Dai-He Fan(樊代和), Mao-Chun Dai(戴茂春), Wei-Jie Guo(郭伟杰), Lian-Fu Wei(韦联福). Chin. Phys. B, 2017, 26(4): 040302.
[10] Lasing dynamics study by femtosecond time-resolved fluorescence non-collinear optical parametric amplification spectroscopy
Wei Dang(党伟), Qing Liao(廖清), Peng-Cheng Mao(毛鹏程), Hong-Bing Fu(付红兵), Yu-Xiang Weng(翁羽翔). Chin. Phys. B, 2016, 25(5): 054207.
[11] Quantum metrology
Xiang Guo-Yong (项国勇), Guo Guang-Can (郭光灿). Chin. Phys. B, 2013, 22(11): 110601.
[12] Properties of a dielectric plate using entangled two-photon states
Zhou Zhi-Yuan (周志远), Ding Dong-Sheng (丁冬生), Shi Bao-Sen (史保森), Zou Xu-Bo (邹旭波), Guo Guang-Can (郭光灿). Chin. Phys. B, 2012, 21(9): 094204.
[13] Comparative investigation of long-wave infrared generation based on ZnGeP2 and CdSe optical parametric oscillators
Yao Bao-Quan(姚宝权), Li Gang(李纲), Zhu Guo-Li(朱国利), Meng Pei-Bei(蒙裴贝), Ju You-Lun(鞠有伦), and Wang Yue-Zhu(王月珠) . Chin. Phys. B, 2012, 21(3): 034213.
[14] Quantum frequency up-conversion with a cavity
Bai Yun-Fei(白云飞), Zhai Shu-Qin(翟淑琴), Gao Jiang-Rui(郜江瑞), and Zhang Jun-Xiang(张俊香). Chin. Phys. B, 2011, 20(8): 084207.
[15] Angular spectrum characters of high gain non-critical phase match optical parametric oscillators
Liu Jian-Hui(刘建辉), Liu Qiang(柳强), and Gong Ma-Li(巩马理). Chin. Phys. B, 2011, 20(5): 054204.
No Suggested Reading articles found!