Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(3): 033604    DOI: 10.1088/1674-1056/19/3/033604
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

Density functional calculations on the geometric structure and properties of the 3d transition metal atom doped endohedral fullerene M@C20F20 (M= Sc--Ni)

Tang Chun-Mei(唐春梅)a), Zhu Wei-Hua(朱卫华)a), and Deng Kai-Ming(邓开明)b)
a College of Science, Hohai University, Nanjing 210098, China; b Department of Applied Physics, Nanjing University of Science and Technology, Nanjing 210094, China
Abstract  This paper uses the generalised gradient approximation based on density functional theory to analyse the geometric structure and properties of the 3d transition metal atom doped endohedral fullerene M@C20F20 (= Sc--Ni). The geometric optimization shows that the cage centre is the most stable position for M, forming the structure named as M@C20F20-4. The inclusion energy, zero-point energy, and energy gap calculations tell us that Ni@C20F20-4 should be thermodynamically and kinetically stablest. M@C20F20-4 (= Sc--Co) possesses high magnetic moments varied from 1 to 6 μB, while Ni@C20F20-4 is nonmagnetic. The Ni--C bond in Ni@C20F20-4 contains both the covalent and ionic characters.
Keywords:  M@C20F20      transition metal      magnetic property      density functional  
Received:  02 March 2009      Revised:  05 May 2009      Accepted manuscript online: 
PACS:  61.48.-c (Structure of fullerenes and related hollow and planar molecular structures)  
  71.20.Tx (Fullerenes and related materials; intercalation compounds)  
  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
  75.30.Cr (Saturation moments and magnetic susceptibilities)  
  36.40.Cg (Electronic and magnetic properties of clusters)  
Fund: Project supported by the Research Starting Foundation of Hohai University (Grant No. 2084/40801130), the Natural Science Foundation of Hohai University (Grant Nos. 2008431211 and 2008430311), the Excellent Innovation Personal Support Plan of Hohai University, the Basic Scientific Research Foundation of National Central, and the Special Foundation of the Natural Natural Science (Grant No. 10947132).

Cite this article: 

Tang Chun-Mei(唐春梅), Zhu Wei-Hua(朱卫华), and Deng Kai-Ming(邓开明) Density functional calculations on the geometric structure and properties of the 3d transition metal atom doped endohedral fullerene M@C20F20 (M= Sc--Ni) 2010 Chin. Phys. B 19 033604

[1] Curl R F 1993 Philos. Trans. R. Soc. London 343 19
[2] Prinzbach H, Weiler A, Landenberger P, Wahl F, W?rth J L, Scott T, Gelmont M, OlevanoD and Issendorff B V 2000 Nature (London) 407 60
[3] Prinzbach H and Weber K 1995 Angew. Chem. Int. Ed. Engl. 33 2239
[4] Zhang C Y, Wu H S and Jiao H J 2007 J. Mol. Model. 13 499
[5] Zhang C Y, Wu H S and Jiao X 2007 J. Mole. Struct: Theochem. 71 815
[6] Ordejò n P, Artacho E and Soler J M 1996 Phys. Rev. B 53 R10441
[7] Guo T, Smalley R E and Scuseria G E 1993 J. Chem. Phys. 99 352
[8] Kumar V and Kawazoe Y 2003 Phys. Rev. Lett. 90 055502
[9] Kumar V and Kawazoe Y 2007 Phys. Rev. B 75 155425
[10] Deller B 1990 J. Chem. Phys. 92 508
[11] Becke A D 1988 J. Am. Chem. Phys. 88 1053
[12] Perdew J P and Wang Y 1992 Phys. Rev. B 45 13244
[13] Jimenez V H A, Tamariz J and Cross R J 2001 J. Phys. Chem. A 105 1315
[14] Chen Z F, Jiao H J, Moran D, Hirsch A, Thiel W and Schleyer P V 2003 J. Phys. Chem. A 107 2075
[15] Lu G L, Yuan Y B, Deng K M, Wu H P, Yang J L and Wang X 2006 Chem. Phys. Lett. 424 142
[16] Aihara J I 1999 Theor. Chem. Acc. 102 134
[17] Moran D, Stahl F, Jemmis E D, Schaefer H F and Schleyer P R 2002 J. Phys. Chem. A 106 5144
[18] Hossain M Z, Kato H S and Kawai M 2005 J. Am. Chem. Soc. 127 15030
[19] Shaltaf R, Mete E and Eilialtroglu S 2005 Phys. Rev. B 72 205415
[20] Salas R E E and Valladares A A 2008 J. Mole. Struct: Theochem. 869 1
[1] Predicting novel atomic structure of the lowest-energy FenP13-n(n=0-13) clusters: A new parameter for characterizing chemical stability
Yuanqi Jiang(蒋元祺), Ping Peng(彭平). Chin. Phys. B, 2023, 32(4): 047102.
[2] A theoretical study of fragmentation dynamics of water dimer by proton impact
Zhi-Ping Wang(王志萍), Xue-Fen Xu(许雪芬), Feng-Shou Zhang(张丰收), and Xu Wang(王旭). Chin. Phys. B, 2023, 32(3): 033401.
[3] Plasmonic hybridization properties in polyenes octatetraene molecules based on theoretical computation
Nan Gao(高楠), Guodong Zhu(朱国栋), Yingzhou Huang(黄映洲), and Yurui Fang(方蔚瑞). Chin. Phys. B, 2023, 32(3): 037102.
[4] Ferroelectricity induced by the absorption of water molecules on double helix SnIP
Dan Liu(刘聃), Ran Wei(魏冉), Lin Han(韩琳), Chen Zhu(朱琛), and Shuai Dong(董帅). Chin. Phys. B, 2023, 32(3): 037701.
[5] Effects of π-conjugation-substitution on ESIPT process for oxazoline-substituted hydroxyfluorenes
Di Wang(汪迪), Qiao Zhou(周悄), Qiang Wei(魏强), and Peng Song(宋朋). Chin. Phys. B, 2023, 32(2): 028201.
[6] High-order harmonic generation of the cyclo[18]carbon molecule irradiated by circularly polarized laser pulse
Shu-Shan Zhou(周书山), Yu-Jun Yang(杨玉军), Yang Yang(杨扬), Ming-Yue Suo(索明月), Dong-Yuan Li(李东垣), Yue Qiao(乔月), Hai-Ying Yuan(袁海颖), Wen-Di Lan(蓝文迪), and Mu-Hong Hu(胡木宏). Chin. Phys. B, 2023, 32(1): 013201.
[7] First-principles study of a new BP2 two-dimensional material
Zhizheng Gu(顾志政), Shuang Yu(于爽), Zhirong Xu(徐知荣), Qi Wang(王琪), Tianxiang Duan(段天祥), Xinxin Wang(王鑫鑫), Shijie Liu(刘世杰), Hui Wang(王辉), and Hui Du(杜慧). Chin. Phys. B, 2022, 31(8): 086107.
[8] Adaptive semi-empirical model for non-contact atomic force microscopy
Xi Chen(陈曦), Jun-Kai Tong(童君开), and Zhi-Xin Hu(胡智鑫). Chin. Phys. B, 2022, 31(8): 088202.
[9] Onion-structured transition metal dichalcogenide nanoparticles by laser fabrication in liquids and atmospheres
Le Zhou(周乐), Hongwen Zhang(张洪文), Qian Zhao(赵倩), and Weiping Cai(蔡伟平). Chin. Phys. B, 2022, 31(7): 076106.
[10] Collision site effect on the radiation dynamics of cytosine induced by proton
Xu Wang(王旭), Zhi-Ping Wang(王志萍), Feng-Shou Zhang(张丰收), and Chao-Yi Qian (钱超义). Chin. Phys. B, 2022, 31(6): 063401.
[11] First principles investigation on Li or Sn codoped hexagonal tungsten bronzes as the near-infrared shielding material
Bo-Shen Zhou(周博深), Hao-Ran Gao(高浩然), Yu-Chen Liu(刘雨辰), Zi-Mu Li(李子木),Yang-Yang Huang(黄阳阳), Fu-Chun Liu(刘福春), and Xiao-Chun Wang(王晓春). Chin. Phys. B, 2022, 31(5): 057804.
[12] Laser-induced fluorescence experimental spectroscopy and theoretical calculations of uranium monoxide
Xi-Lin Bai(白西林), Xue-Dong Zhang(张雪东), Fu-Qiang Zhang(张富强), and Timothy C Steimle. Chin. Phys. B, 2022, 31(5): 053301.
[13] Structural and thermodynamic properties of inhomogeneous fluids in rectangular corrugated nano-pores
Yanshuang Kang(康艳霜), Haijun Wang(王海军), and Zongli Sun(孙宗利). Chin. Phys. B, 2022, 31(5): 056104.
[14] Exciton luminescence and many-body effect of monolayer WS2 at room temperature
Jian-Min Wu(吴建民), Li-Hui Li(黎立辉), Wei-Hao Zheng(郑玮豪), Bi-Yuan Zheng(郑弼元), Zhe-Yuan Xu(徐哲元), Xue-Hong Zhang(张学红), Chen-Guang Zhu(朱晨光), Kun Wu(吴琨), Chi Zhang(张弛), Ying Jiang(蒋英),Xiao-Li Zhu(朱小莉), and Xiu-Juan Zhuang(庄秀娟). Chin. Phys. B, 2022, 31(5): 057803.
[15] Tunable electronic properties of GaS-SnS2 heterostructure by strain and electric field
Da-Hua Ren(任达华), Qiang Li(李强), Kai Qian(钱楷), and Xing-Yi Tan(谭兴毅). Chin. Phys. B, 2022, 31(4): 047102.
No Suggested Reading articles found!