Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(2): 027801    DOI: 10.1088/1674-1056/19/2/027801
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Doping effects of Nb5+ on red long afterglow phosphor CaTiO3:Pr3+

Jiang Zi-Qiang(蒋自强), Wang Yu-Hua(王育华), and Gong Yu(龚宇)
Department of Materials Science, School of Physical Science and Technology,Lanzhou University, Lanzhou 730000, China
Abstract  A series of Nb5+ codoped red long afterglow phosphors CaTi1-xNbxO3:Pr 0.0023+ (0 ≤ x ≤ 0.05) is prepared by a solid state reaction method. Their photoluminescence, phosphorescence and thermoluminescence are investigated. The results indicate that codoping Nb5+ can improve the photoluminescence and phosphorescence property of CaTiO3:Pr3+ significantly. When 3-mol% Nb5+ is codoped, the emission intensity of CaTiO3:Pr3+ is enhanced twice, while the afterglow time is extended from 10 min to about 40 min. Thermoluminescence results reveal that the trapping level of CaTiO3:Pr3+ is reduced from 0.82 eV to 0.62 eV by codoping Nb5+. The effect of Nb5+ doping on enhancing the photoluminescence intensity and afterglow time of CaTiO3:Pr3+ is discussed.
Keywords:  CaTiO3:Pr3+      red afterglow      trap  
Received:  06 October 2008      Revised:  19 August 2009      Accepted manuscript online: 
PACS:  78.55.Hx (Other solid inorganic materials)  
  61.72.up (Other materials)  
  78.60.Kn (Thermoluminescence)  

Cite this article: 

Jiang Zi-Qiang(蒋自强), Wang Yu-Hua(王育华), and Gong Yu(龚宇) Doping effects of Nb5+ on red long afterglow phosphor CaTiO3:Pr3+ 2010 Chin. Phys. B 19 027801

[1] Mstsuzawa T, Aoki Y, Takeuchi N and Murayama Y 1996 J.Electrochem. Soc. 14 3 2670
[2] Wang L, Wang Y H and Xu X H 2008 J. Appl. Phys. 104 013519
[3] Xu X H, Wang Y H and Wang L 2009 J. Appl. Phys. 105 083502
[4] Aizawa H, Katsumata T, Takahashi J, Matsunaga K, Komuro S,Morikawa T and Toba E 2002 Electrochem. Solid-State Lett. 5 H17
[5] Xu C N, Watanabe T, Akiyama M and Zheng X G 1999 Appl.Phys. Lett. 74 2414
[6] Xu C N, Zheng X G, Akiyama M, Nonaka K and Watanabe T 2000 Appl. Phys. Lett. 76 179
[7] Jia D D, Wu B Q and Zhu J 2000 Chin. Phys. 9 69
[8] Murazaki Y, Arak K and Ichinomiya K 1999 Rare Earth Jpn. 35 41
[9] Wang X, Jia D and Yen W M 2003 J. Lumin. 34 102
[10] Wang J, Su Q and Wang S B 2005 Mater. Res. Bull. 40 1
[11] Liu X, Jia P, Li J and Li G 2006 J. Appl. Phys. 99124902
[12] Diallo P T, Boutinaud P, Mahiou R and Cousseins J C 1997 Phys. Stat. Sol. (a) 160 255
[13] Pan Y, Su Q, Xu H, Chen T, Ge W, Yang C and Wu M 2003 J.Solid State Chem. 174 69
[14] Tang J, Yu X, Yang L, Zhou C and Peng X 2006 Mater.Lett. 60 326
[15] Zhang X, Zhang J, Zhan X, Chen L, Lu S and Wang X J 2007 J. Lumin. 122-1 23 958
[16] Schipper W J and Blasse G 1994 Chem. Mater. 6 1784
[17] Jia W, Jia D, Rodriguez T, Evans D R, Meltzer R S and Yen W M2006 J. Lumin. 119-120 13
[18] Boutinaud P, Pinel E, Dubois M, Vink A P and Mahiou R 2005 J. Lumin. 111 69
[19] Jia W Y, And\'{u}jar A Pérez and Rivera I 2003 J.Electrochem. Soc. 150 H161
[20] Fang T H, Hsiao Y J, Chang Y S and Chang Y H 2006 Mater.Chem. Phys. 100 418
[21] Aitasalo T, H?ls? J, Jungner H, Lastusaari M andNiittykoski J 2006 J. Phys. Chem. B 110 4589
[22] Chen R 1969 J. Electrochem. Soc. 116 1254
[23] Chen R 1969 J. Appl. Phys. 40 570
[1] Reverse gate leakage mechanism of AlGaN/GaN HEMTs with Au-free gate
Xin Jiang(蒋鑫), Chen-Hao Li(李晨浩), Shuo-Xiong Yang(羊硕雄), Jia-Hao Liang(梁家豪), Long-Kun Lai(来龙坤), Qing-Yang Dong(董青杨), Wei Huang(黄威),Xin-Yu Liu(刘新宇), and Wei-Jun Luo(罗卫军). Chin. Phys. B, 2023, 32(3): 037201.
[2] Generation of a blue-detuned optical storage ring by a metasurface and its application in optical trapping of cold molecules
Chen Ling(凌晨), Yaling Yin(尹亚玲), Yang Liu(刘泱), Lin Li(李林), and Yong Xia(夏勇). Chin. Phys. B, 2023, 32(2): 023301.
[3] High frequency doubling efficiency THz GaAs Schottky barrier diode based on inverted trapezoidal epitaxial cross-section structure
Xiaoyu Liu(刘晓宇), Yong Zhang(张勇), Haoran Wang(王皓冉), Haomiao Wei(魏浩淼),Jingtao Zhou(周静涛), Zhi Jin(金智), Yuehang Xu(徐跃杭), and Bo Yan(延波). Chin. Phys. B, 2023, 32(1): 017305.
[4] High-performance amorphous In-Ga-Zn-O thin-film transistor nonvolatile memory with a novel p-SnO/n-SnO2 heterojunction charge trapping stack
Wen Xiong(熊文), Jing-Yong Huo(霍景永), Xiao-Han Wu(吴小晗), Wen-Jun Liu(刘文军),David Wei Zhang(张卫), and Shi-Jin Ding(丁士进). Chin. Phys. B, 2023, 32(1): 018503.
[5] Charge self-trapping in two strand biomolecules: Adiabatic polaron approach
D Chevizovich, S Zdravković, A V Chizhov, and Z Ivić. Chin. Phys. B, 2023, 32(1): 010506.
[6] Physical analysis of normally-off ALD Al2O3/GaN MOSFET with different substrates using self-terminating thermal oxidation-assisted wet etching technique
Cheng-Yu Huang(黄成玉), Jin-Yan Wang(王金延), Bin Zhang(张斌), Zhen Fu(付振), Fang Liu(刘芳), Mao-Jun Wang(王茂俊), Meng-Jun Li(李梦军), Xin Wang(王鑫), Chen Wang(汪晨), Jia-Yin He(何佳音), and Yan-Dong He(何燕冬). Chin. Phys. B, 2022, 31(9): 097401.
[7] New designed helical resonator to improve measurement accuracy of magic radio frequency
Tian Guo(郭天), Peiliang Liu(刘培亮), and Chaohong Lee(李朝红). Chin. Phys. B, 2022, 31(9): 093201.
[8] Achieving ultracold Bose-Fermi mixture of 87Rb and 40K with dual dark magnetic-optical-trap
Jie Miao(苗杰), Guoqi Bian(边国旗), Biao Shan(单标), Liangchao Chen(陈良超), Zengming Meng(孟增明), Pengjun Wang(王鹏军), Lianghui Huang(黄良辉), and Jing Zhang(张靖). Chin. Phys. B, 2022, 31(8): 080306.
[9] Enhanced cold mercury atom production with two-dimensional magneto-optical trap
Ye Zhang(张晔), Qi-Xin Liu(刘琪鑫), Jian-Fang Sun(孙剑芳), Zhen Xu(徐震), and Yu-Zhu Wang(王育竹). Chin. Phys. B, 2022, 31(7): 073701.
[10] Loss prediction of three-level amplified spontaneous emission sources in radiation environment
Shen Tan(谭深), Yan Li(李彦), Hao-Shi Zhang(张浩石), Xiao-Wei Wang(王晓伟), and Jing Jin(金靖). Chin. Phys. B, 2022, 31(6): 064211.
[11] High-performance coherent population trapping clock based on laser-cooled atoms
Xiaochi Liu(刘小赤), Ning Ru(茹宁), Junyi Duan(段俊毅), Peter Yun(云恩学), Minghao Yao(姚明昊), and Jifeng Qu(屈继峰). Chin. Phys. B, 2022, 31(4): 043201.
[12] Tetrapartite entanglement measures of generalized GHZ state in the noninertial frames
Qian Dong(董茜), R. Santana Carrillo, Guo-Hua Sun(孙国华), and Shi-Hai Dong(董世海). Chin. Phys. B, 2022, 31(3): 030303.
[13] Impact of O2 post oxidation annealing on the reliability of SiC/SiO2 MOS capacitors
Peng Liu(刘鹏), Ji-Long Hao(郝继龙), Sheng-Kai Wang(王盛凯), Nan-Nan You(尤楠楠), Qin-Yu Hu(胡钦宇), Qian Zhang(张倩), Yun Bai(白云), and Xin-Yu Liu(刘新宇). Chin. Phys. B, 2021, 30(7): 077303.
[14] Numerical analysis of motional mode coupling of sympathetically cooled two-ion crystals
Li-Jun Du(杜丽军), Yan-Song Meng(蒙艳松), Yu-Ling He(贺玉玲), and Jun Xie(谢军). Chin. Phys. B, 2021, 30(7): 073702.
[15] Degradation of gate-recessed MOS-HEMTs and conventional HEMTs under DC electrical stress
Yi-Dong Yuan(原义栋), Dong-Yan Zhao(赵东艳), Yan-Rong Cao(曹艳荣), Yu-Bo Wang(王于波), Jin Shao(邵瑾), Yan-Ning Chen(陈燕宁), Wen-Long He(何文龙), Jian Du(杜剑), Min Wang(王敏), Ye-Ling Peng(彭业凌), Hong-Tao Zhang(张宏涛), Zhen Fu(付振), Chen Ren(任晨), Fang Liu(刘芳), Long-Tao Zhang(张龙涛), Yang Zhao(赵扬), Ling Lv(吕玲), Yi-Qiang Zhao(赵毅强), Xue-Feng Zheng(郑雪峰), Zhi-Mei Zhou(周芝梅), Yong Wan(万勇), and Xiao-Hua Ma(马晓华). Chin. Phys. B, 2021, 30(7): 077305.
No Suggested Reading articles found!