Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(2): 026802    DOI: 10.1088/1674-1056/19/2/026802
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Analytical results for the cluster size distribution in controlled deposition processes

Ke Jian-Hong(柯见洪)a)b), Chen Xiao-Shuang(陈效双)a), and Lin Zhen-Quan(林振权)b)
a National Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, China; b College of Physics and Electronic Information Engineering, Wenzhou University, Wenzhou 325035, China
Abstract  This paper proposes a controlled particle deposition model for cluster growth on the substrate surface and then presents exact results for the cluster (island) size distribution. In the system, at every time step a fixed number of particles are injected into the system and immediately deposited onto the substrate surface. It investigates the cluster size distribution by employing the generalized rate equation approach. The results exhibit that the evolution behaviour of the system depends crucially on the details of the adsorption rate kernel. The cluster size distribution can take the Poisson distribution or the conventional scaling form in some cases, while it is of a quite complex form in other cases.
Keywords:  cluster growth      deposition      kinetic behaviour  
Received:  13 March 2009      Revised:  08 April 2009      Accepted manuscript online: 
PACS:  81.15.-z (Methods of deposition of films and coatings; film growth and epitaxy)  
  68.55.A- (Nucleation and growth)  
  68.43.Mn (Adsorption kinetics ?)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 10775104, 10875086 and 10305009).

Cite this article: 

Ke Jian-Hong(柯见洪), Chen Xiao-Shuang(陈效双), and Lin Zhen-Quan(林振权) Analytical results for the cluster size distribution in controlled deposition processes 2010 Chin. Phys. B 19 026802

[1] Friedlander S K 1977 Smoke, Dust and Haze: Fundamentals of AerosolBehavior (New York: Wiley)
[2] Silk J 1980 Star Formation (Sauverny: Geneva Observatory)
[3] Family F and Landau D P 1984 Kinetics of Aggregation and Gelation (Amsterdam: North-Holland)
[4] Meakin P 1992 Rep. Prog. Phys. 55 157
[5] Pimpinelli A and Villain J 1998 Physics of Crystal Growth (Cambridge: Cambridge UniversityPress)
[6] Meakin P 1983 Phys. Rev. Lett. 51 1119
[7] Kolb M, Botet R and Jullien R 1983 Phys. Rev. Lett. 51 1123
[8] Vicsek T and Family F 1984 Phys. Rev. Lett. 521669
[9] van Dongen P G J and Ernst M H 1985 Phys. Rev.Lett. 541396
[10] Doering C R and Ben-Avraham D 1989 Phys. Rev. Lett. 622563
[11] Song S and Poland D 1992 Phys. Rev. A 46 5063
[12] Krapivsky P L and Redner S 1996 Phys. Rev. E 543553
[13] Ke J and Lin Z 2002 Phys. Rev. E 65 051107
[14] Ispolatov S, Krapivsky P L and Redner S 1998 Eur. Phys. J. B 2267
[15] Leyvraz F and Redner S 2002 Phys. Rev. Lett. 88068301
[16] Ke J and Lin Z 2002 Phys. Rev. E 66 062101
[17] Ke J and Lin Z 2004 J. Phys. A 37 3967
[18] Hinrichsen E L, Feder J and J?ssang T 1986 J. Stat. Phys. 44 793
[19] Schaaf P and Talbot J 1989 Phys. Rev. Lett. 62 175
[20] Evans J W 1993 Rev. Mod. Phys. 65 1281
[21] Filipe J A N and Rodgers G J 1995 Phys. Rev. E 52 6044
[22] Ben-Naim E and Krapivsky P L 1996 Phys. Rev. E 543562
[23] Hassan M K, Schmidt J, Blasius B and Kurths J 2002 Phys. Rev. E 65 045103
[24] Robbie K and Brett M J 1997 J. Vac. Sci. Technol. A 15 1460
[25] Zhao Y P, Ye D X, Wang G C and Lu T M 2002 Nano Lett. 2 351
[26] Wang P I, Zhao Y P, Wang G C and Lu T M 2004 Nanotechnology 15 218
[27] Peng X and Chen A 2005 Appl. Phys. A 80 473
[28] Steele J J and Brett M J 2007 J Mater. Sci: Mater.Electron. 18 367
[29] Wang H H, Shi Y J, William C and Yigal B 2008 Chin. Phys.Lett. 25 234
[30] Chen Y S, Yang S E, Wang J H, Lu J X, Gao X Y, Gu J H, Zheng W andZhao S L 2008 Chin. Phys. B 17 1394
[31] Chen Y S, Wang J H, Lu J X, Zheng W, Gu J H, Yang S E, Gao X Y, Guo X J, Zhao S L and Gao Z 2008 Chin. Phys. B 17 3464
[32] Han D L, Zhao Y L, Zhao H B, Song T F and Liang E J 2007 Acta Phys. Sin. 56 5958 (inChinese)
[33] Tang F, Liu D L, Ye D X, Zhao Y P, Lu T M, Wang G C and Vijayaraghavan A2003 J. Appl. Phys. 9 3 4194
[34] Kayes B M, Atwater H A and Lewis N S 2005 J.Appl. Phys. 97 14302
[35] He Y P, Zhang Z Y and Zhao Y P 2008 J. Vac. Sci. Technol. B 26 1350
[36] Karabacak T, Singh J P, Zhao Y P, Wang G C and Lu T M 2003 Phys. Rev. B 68 125408
[37] Enomoto Y and Taguchi M 2005 Appl. Surf. Sci. 244 213
[1] Low-resistance ohmic contacts on InAlN/GaN heterostructures with MOCVD-regrown n+-InGaN and mask-free regrowth process
Jingshu Guo(郭静姝), Jiejie Zhu(祝杰杰), Siyu Liu(刘思雨), Jielong Liu(刘捷龙), Jiahao Xu(徐佳豪), Weiwei Chen(陈伟伟), Yuwei Zhou(周雨威), Xu Zhao(赵旭), Minhan Mi(宓珉瀚), Mei Yang(杨眉), Xiaohua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2023, 32(3): 037303.
[2] Influence of magnetic field on power deposition in high magnetic field helicon experiment
Yan Zhou(周岩), Peiyu Ji(季佩宇), Maoyang Li(李茂洋), Lanjian Zhuge(诸葛兰剑), and Xuemei Wu(吴雪梅). Chin. Phys. B, 2023, 32(2): 025205.
[3] Growth behaviors and emission properties of Co-deposited MAPbI3 ultrathin films on MoS2
Siwen You(游思雯), Ziyi Shao(邵子依), Xiao Guo(郭晓), Junjie Jiang(蒋俊杰), Jinxin Liu(刘金鑫), Kai Wang(王凯), Mingjun Li(李明君), Fangping Ouyang(欧阳方平), Chuyun Deng(邓楚芸), Fei Song(宋飞), Jiatao Sun(孙家涛), and Han Huang(黄寒). Chin. Phys. B, 2023, 32(1): 017901.
[4] Optical and electrical properties of BaSnO3 and In2O3 mixed transparent conductive films deposited by filtered cathodic vacuum arc technique at room temperature
Jian-Ke Yao(姚建可) and Wen-Sen Zhong(钟文森). Chin. Phys. B, 2023, 32(1): 018101.
[5] Physical analysis of normally-off ALD Al2O3/GaN MOSFET with different substrates using self-terminating thermal oxidation-assisted wet etching technique
Cheng-Yu Huang(黄成玉), Jin-Yan Wang(王金延), Bin Zhang(张斌), Zhen Fu(付振), Fang Liu(刘芳), Mao-Jun Wang(王茂俊), Meng-Jun Li(李梦军), Xin Wang(王鑫), Chen Wang(汪晨), Jia-Yin He(何佳音), and Yan-Dong He(何燕冬). Chin. Phys. B, 2022, 31(9): 097401.
[6] Monolayer MoS2 of high mobility grown on SiO2 substrate by two-step chemical vapor deposition
Jia-Jun Ma(马佳俊), Kang Wu(吴康), Zhen-Yu Wang(王振宇), Rui-Song Ma(马瑞松), Li-Hong Bao(鲍丽宏), Qing Dai(戴庆), Jin-Dong Ren(任金东), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2022, 31(8): 088105.
[7] Plasma-wave interaction in helicon plasmas near the lower hybrid frequency
Yide Zhao(赵以德), Jinwei Bai(白进纬), Yong Cao(曹勇), Siyu Wu(吴思宇), Eduardo Ahedo, Mario Merino, and Bin Tian(田滨). Chin. Phys. B, 2022, 31(7): 075203.
[8] Designing high k dielectric films with LiPON—Al2O3 hybrid structure by atomic layer deposition
Ze Feng(冯泽), Yitong Wang(王一同), Jilong Hao(郝继龙), Meiyi Jing(井美艺), Feng Lu(卢峰), Weihua Wang(王维华), Yahui Cheng(程雅慧), Shengkai Wang(王盛凯), Hui Liu(刘晖), and Hong Dong(董红). Chin. Phys. B, 2022, 31(5): 057701.
[9] The 50 nm-thick yttrium iron garnet films with perpendicular magnetic anisotropy
Shuyao Chen(陈姝瑶), Yunfei Xie(谢云飞), Yucong Yang(杨玉聪), Dong Gao(高栋), Donghua Liu(刘冬华), Lin Qin(秦林), Wei Yan(严巍), Bi Tan(谭碧), Qiuli Chen(陈秋丽), Tao Gong(龚涛), En Li(李恩), Lei Bi(毕磊), Tao Liu(刘涛), and Longjiang Deng(邓龙江). Chin. Phys. B, 2022, 31(4): 048503.
[10] Characterization of the N-polar GaN film grown on C-plane sapphire and misoriented C-plane sapphire substrates by MOCVD
Xiaotao Hu(胡小涛), Yimeng Song(宋祎萌), Zhaole Su(苏兆乐), Haiqiang Jia(贾海强), Wenxin Wang(王文新), Yang Jiang(江洋), Yangfeng Li(李阳锋), and Hong Chen(陈弘). Chin. Phys. B, 2022, 31(3): 038103.
[11] Origin, characteristics, and suppression of residual nitrogen in MPCVD diamond growth reactor
Yan Teng(滕妍), Dong-Yang Liu(刘东阳), Kun Tang(汤琨), Wei-Kang Zhao(赵伟康), Zi-Ang Chen(陈子昂), Ying-Meng Huang(黄颖蒙), Jing-Jing Duan(段晶晶), Yue Bian(卞岳), Jian-Dong Ye(叶建东), Shun-Ming Zhu(朱顺明), Rong Zhang(张荣), You-Dou Zheng(郑有炓), and Shu-Lin Gu(顾书林). Chin. Phys. B, 2022, 31(12): 128106.
[12] Significant suppression of residual nitrogen incorporation in diamond film with a novel susceptor geometry employed in MPCVD
Weikang Zhao(赵伟康), Yan Teng(滕妍), Kun Tang(汤琨), Shunming Zhu(朱顺明), Kai Yang(杨凯), Jingjing Duan(段晶晶), Yingmeng Huang(黄颖蒙), Ziang Chen(陈子昂), Jiandong Ye(叶建东), and Shulin Gu(顾书林). Chin. Phys. B, 2022, 31(11): 118102.
[13] Development of ZnTe film with high copper doping efficiency for solar cells
Xin-Lu Lin(林新璐), Wen-Xiong Zhao(赵文雄), Qiu-Chen Wu(吴秋晨), Yu-Feng Zhang(张玉峰), Hasitha Mahabaduge, and Xiang-Xin Liu(刘向鑫). Chin. Phys. B, 2022, 31(10): 108802.
[14] Uniform light emission from electrically driven plasmonic grating using multilayer tunneling barriers
Xiao-Bo He(何小波), Hua-Tian Hu(胡华天), Ji-Bo Tang(唐继博), Guo-Zhen Zhang(张国桢), Xue Chen(陈雪), Jun-Jun Shi(石俊俊), Zhen-Wei Ou(欧振伟), Zhi-Feng Shi(史志锋), Shun-Ping Zhang(张顺平), Chang Liu(刘昌), and Hong-Xing Xu(徐红星). Chin. Phys. B, 2022, 31(1): 017803.
[15] A simple method to synthesize worm-like AlN nanowires and its field emission studies
Qi Liang(梁琦), Meng-Qi Yang(杨孟骐), Chang-Hao Wang(王长昊), and Ru-Zhi Wang(王如志). Chin. Phys. B, 2021, 30(8): 087302.
No Suggested Reading articles found!