Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(2): 026803    DOI: 10.1088/1674-1056/19/2/026803
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Scanning tunneling microscopy study of surface reconstruction induced by N adsorption on Cu (100) surface

Dou Wei-Dong(窦卫东)a)b), Zhang Han-Jie(张寒洁)a), and Bao Shi-Ning(鲍世宁)a)
a Physics Department, Zhejiang University, Hangzhou 310027, China; b Physics Department, Shaoxing College of Arts and Science, Shaoxing 310027, China
Abstract  The reconstructed structure of Cu (100) surface induced by atomic N adsorption is studied by using scanning tunneling microscopy (STM). The 2D structure of copper boundary between neighbouring N covered islands is found to be sensitive to the growth conditions, e.g. N+ bombardment time and annealing temperature. The copper boundary experiences a transition from nano-scale stripe to nano-particle when the substrate is continuously annealed at 623 K for a longer time. A well-defined copper-stripe network can be achieved by precisely controlling the growth conditions, which highlights the possibility of producing new templates for nanofabrication.
Keywords:  nitrogen adsorption      surface reconstruction      surface strain relief      template  
Received:  16 October 2008      Revised:  10 August 2009      Accepted manuscript online: 
PACS:  68.43.Mn (Adsorption kinetics ?)  
  68.35.B- (Structure of clean surfaces (and surface reconstruction))  
  68.37.Ef (Scanning tunneling microscopy (including chemistry induced with STM))  
  68.47.De (Metallic surfaces)  
  81.40.Ef (Cold working, work hardening; annealing, post-deformation annealing, quenching, tempering recovery, and crystallization)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 60506019 and 10674118).

Cite this article: 

Dou Wei-Dong(窦卫东), Zhang Han-Jie(张寒洁), and Bao Shi-Ning(鲍世宁) Scanning tunneling microscopy study of surface reconstruction induced by N adsorption on Cu (100) surface 2010 Chin. Phys. B 19 026803

[1] Repp J, Meyer G, Stojkovi? S M, Gourdon A and Joachim C 2005 Phys. Rev.Lett. 94 026803
[2] Heinrich A J, Gupta J A, Lutz C P and Eigler D M 2004 Science 306 466
[3] Hirjibehedin C F, Lutz C P and Heinrich A J 2006 Science 312 1021
[4] Chen M J, Liang Y C, Yuan Y J and Li D 2008 Chin. Phys. B 17 4260
[5] Ruggiero C D, Choi T and Gupta J A 2007 Appl. Phys. Lett. 91 253106
[6] Pan Y, Shi D X and Gao H J 2007 Chin. Phys. 16 3151
[7] Franchy R, Wuttig M and Bach H I 1986 Condens. Matter. 64 453
[8] Zeng H C, Sodhi R N S and Michell K A R 1987 Surf. Sci. 188 599
[9] Lederer T, Arvanitis D, Tischer M, Comelli G, Tr?ger L and Baberschke K 1993 Phys. Rev. B 48 11277
[10] Leibsle F M, Dhesi S S, Barrett S D and Robinson A W 1994 Surf. Sci. 3 17 309
[11] Leibsle F M, Flipse C F J and Robinson A W 1993 Phys. Rev. B 47 15865
[12] Drive S M and Woodruff D P 2001 Surf. Sci. 492 11
[1] Introducing voids around the interlayer of AlN by high temperature annealing
Jianwei Ben(贲建伟), Jiangliu Luo(罗江流), Zhichen Lin(林之晨), Xiaojuan Sun(孙晓娟), Xinke Liu(刘新科), and Xiaohua Li(黎晓华). Chin. Phys. B, 2022, 31(7): 076104.
[2] Interface engineering of transition metal dichalcogenide/GaN heterostructures: Modified broadband for photoelectronic performance
Yinlu Gao(高寅露), Kai Cheng(程开), Xue Jiang(蒋雪), and Jijun Zhao(赵纪军). Chin. Phys. B, 2022, 31(11): 117304.
[3] Stress and strain analysis of Si-based Ⅲ-V template fabricated by ion-slicing
Shuyan Zhao(赵舒燕), Yuxin Song(宋禹忻), Hao Liang(梁好), Tingting Jin(金婷婷), Jiajie Lin(林家杰), Li Yue(岳丽), Tiangui You(游天桂), Chang Wang(王长), Xin Ou(欧欣), Shumin Wang(王庶民). Chin. Phys. B, 2020, 29(7): 077303.
[4] Comparison study of GaN films grown on porous andplanar GaN templates
Shan Ding(丁姗), Yue-Wen Li(李悦文), Xiang-Qian Xiu(修向前), Xue-Mei Hua(华雪梅), Zi-Li Xie(谢自力), Tao Tao(陶涛), Peng Chen(陈鹏), Bin Liu(刘斌), Rong Zhang(张荣), You-Dou Zheng(郑有炓). Chin. Phys. B, 2020, 29(3): 038103.
[5] Growth of high-quality perovskite (110)-SrIrO3 thin films using reactive molecular beam epitaxy
Kai-Li Zhang(张凯莉), Cong-Cong Fan(樊聪聪), Wan-Ling Liu(刘万领), Yu-Feng Wu(吴宇峰), Xiang-Le Lu(卢祥乐), Zheng-Tai Liu(刘正太), Ji-Shan Liu(刘吉山), Zhong-Hao Liu(刘中灏), Da-Wei Shen(沈大伟). Chin. Phys. B, 2018, 27(8): 088103.
[6] Cancelable remote quantum fingerprint templates protection scheme
Qin Liao(廖骎), Ying Guo(郭迎), Duan Huang(黄端). Chin. Phys. B, 2017, 26(9): 090302.
[7] Thermo-controllable self-assembled structures of single-layer 4, 4"-diamino-p-terphenyl molecules on Au (110)
Junhai Ren(任俊海), Deliang Bao(包德亮), Li Dong(董立), Lei Gao(高蕾), Rongting Wu(武荣庭), Linghao Yan(闫凌昊), Aiwei Wang(王爱伟), Jiahao Yan(严佳浩), Yeliang Wang(王业亮), Shixuan Du(杜世萱), Qing Huan(郇庆), Hongjun Gao(高鸿钧). Chin. Phys. B, 2017, 26(8): 086801.
[8] V-L decomposition of a novel full-waveform lidar system based on virtual instrument technique
Xu Fan (徐帆), Wang Yuan-Qing (王元庆). Chin. Phys. B, 2015, 24(10): 104214.
[9] Preparing three-dimensional graphene architectures:Review of recent developments
Zeng Min (曾敏), Wang Wen-Long (王文龙), Bai Xue-Dong (白雪冬). Chin. Phys. B, 2013, 22(9): 098105.
[10] A density-functional theory investigation on disorption of O2 on Sn(111) and its comparison with initial oxidation on the X(111) (X=Si, Ge, Sn, Pb) surfaces
Hu Zi-Yu (胡自玉), Wan Ping-Yu (万平玉), Hou Zhi-Ling (侯志灵), Shao Xiao-Hong (邵晓红). Chin. Phys. B, 2012, 21(12): 126803.
[11] Real-time observation of template-assisted colloidal aggregation and colloidal dispersion under an alternating electric field
Li Chao-Rong(李超荣), Li Shu-Wen(李书文), Mei Jie(梅洁), Xu Qing(徐庆), Zheng Ying-Ying(郑莹莹), and Dong Wen-Jun(董文钧) . Chin. Phys. B, 2011, 20(7): 078102.
[12] Optoelectronic characterisation of an individual ZnO nanowire in contact with a micro-grid template
Jiang Wei(姜威), Gao Hong(高红), Xu Ling-Ling(徐玲玲), Ma Jia-Ning(马佳宁), Zhang E(张锷), Wei Ping(魏平), and Lin Jia-Qi(林家齐). Chin. Phys. B, 2011, 20(3): 037307.
[13] Tuning of the periodicity of stable self-organized metallic templates
Wang Xiao-Chun(王晓春), Zhao Han-Yue(赵寒月), Chen Nan-Xian(陈难先), and Zhang Yong(张勇) . Chin. Phys. B, 2011, 20(2): 020513.
[14] Surface reconstruction on stishovite SiO2, HfO2 and rutile TiO2 (001)
Tang Fu-Ling(汤富领), Yue Rui(岳瑞), and Lu Wen-Jiang(路文江). Chin. Phys. B, 2011, 20(2): 026801.
[15] Magnetic properties of DNA-templated Co/Cu naonoparticle chains
Gao You-Hui(高有辉), Wei Ling(卫玲), Gao Chun-Lei(高春蕾), Xia Wei-Xing(夏卫星), and Shindo Daisuke(進藤大輔). Chin. Phys. B, 2010, 19(8): 088103.
No Suggested Reading articles found!