Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(12): 127201    DOI: 10.1088/1674-1056/19/12/127201
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

A scattering matrix approach to quantum pumping: beyond the small-AC-driving-amplitude limit

Zhu Rui(朱瑞)$†ger$
Department of Physics, South China University of Technology, Guangzhou 510641, China
Abstract  In the adiabatic and weak-modulation quantum pump, net electron flow is driven from one reservoir to another by absorbing or emitting an energy quantum $\hbar\omega$ from or to the reservoirs. This paper considers high-order dependence of the scattering matrix on the time. Non-sinusoidal behaviour of strong pumping is revealed. The relation between the pumped current and the ac driving amplitude varies from power of 2, 1 to 1/2 when stronger modulation is exerted. Open experimental observation can be interpreted by multi-energy-quantum-related processes.
Keywords:  quantum pumping      scattering matrix approach      multi-energy-quantum-related processes  
Received:  26 February 2010      Revised:  15 May 2010      Accepted manuscript online: 
PACS:  72.10.Bg (General formulation of transport theory)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11004063), the Fundamental Research Funds for the Central Universities (Grant No. 2009ZM0299), the Natural Science Foundation of South China University of Technology (Grant No. x2lxE5090410), and the Graduate Course Construction Project of South China University of Technology (Grant No. yjzk2009001).

Cite this article: 

Zhu Rui(朱瑞)$†ger$ A scattering matrix approach to quantum pumping: beyond the small-AC-driving-amplitude limit 2010 Chin. Phys. B 19 127201

[1] Kouwenhoven L P, Johnson A T, van der Vaart N C, Harmans C J P M and Foxon C T 1991 Phys. Rev. Lett. 67 1626
[2] Thouless D J 1983 Phys. Rev. B 27 6083
[3] Switkes M, Marcus C M, Campman K and Gossard A C 1999 Science 283 1905
[4] Brouwer P W 1998 Phys. Rev. B 58 R10135
[5] Büttiker M, Thomas H and Pretre A 1994 Z. Phys. B 94 133
[6] Büttiker M, Pretre A and Thomas H 1993 Phys. Rev. Lett. 70 4114
[7] Moskalets M and Büttiker M 2002 Phys. Rev. B 66 035306
[8] Benjamin R and Benjamin C 2004 Phys. Rev. B 69 085318
[9] Park H C and Ahn K H 2008 Phys. Rev. Lett. 101 116804
[10] Devillard P, Gasparian V and Martin T 2008 Phys. Rev. B 78 085130
[11] Citro R and Romeo F 2006 Phys. Rev. B 73 233304
[12] Moskalets M and Büttiker M 2005 Phys. Rev. B 72 035324
[13] Moskalets M and Büttiker M 2007 Phys. Rev. B 75 035315
[14] Romeoa F and Citro R 2006 Euro. Phys. J. B 50 483
[15] Splettstoesser J, Governale M and König J 2008 Phys. Rev. B 77 195320
[16] Strass M, Hänggi P and Kohler S 2005 Phys. Rev. Lett. 95 130601
[17] Avron J E, Elgart A, Graf G M and Sadun L 2001 Phys. Rev. Lett. 87 236601
[18] Wang B G, Wang J and Guo H 2002 Phys. Rev. B 65 073306
[19] Wang B G and Wang J 2002 Phys. Rev. B 66 125310
[20] Wang B G, Wang J and Guo H 2003 Phys. Rev. B 68 155326
[21] Arrachea L 2005 Phys. Rev. B 72 125349
[22] Tserkovnyak Y, Brataas A, Bauer G E W and Halperin B I 2005 Rev. Mod. Phys. 77 1375
[23] Ralph D C and Stiles M D 2008 J. Magn. Magn. Mater. 320 1190
[24] Zhu R and Chen H 2009 Appl. Phys. Lett. 95 122111
[25] Prada E, San-Jose P and Schomerus H 2009 Arxiv:0907.1568v1 (unpublished)
[26] Agarwal A and Sen D 2007 J. Phys.: Condens. Matter 19 046205
[27] Torres L E F F 2005 Phys. Rev. B 72 245339
[28] Agarwal A and Sen D 2007 Phys. Rev. B 76 235316
[29] Winkler N, Governale M and König J 2009 Phys. Rev. B 79 235309
[30] Qi X L and Zhang S C 2009 Phys. Rev. B 79 235442
[31] Wright S J, Blumenthal M D, Pepper M, Anderson D, Jones G A C, Nicoll C A and Ritchie D A 2009 Phys. Rev. B 80 113303
[32] Romeo F and Citro R 2009 Phys. Rev. B 80 165311
[33] Moskalets M and Büttiker M 2002 Phys. Rev. B 66 205320
[34] Li L, Kaestner B, Blumenthal M D, Giblin S, Janssen T J B M, Pepper M, Anderson D, Jones G, Ritchie D A and Gao J 2008 Acta Phys. Sin. 57 1878 (in Chinese)
[35] Wu F and Wang T H 2003 Acta Phys. Sin. 52 696 (in Chinese)
[36] Landauer R 1957 IBM J. Res. Develop. 1 223
[37] Landauer R 1970 Phil. Mag. 21 863
[38] Büttiker M, Imry Y, Landauer R and Pinhas S 1985 Phys. Rev. B 31 6207
[39] Polianski M L, Vavilov M G and Brouwer P W 2002 Phys. Rev. B 65 245314
[1] Thermoelectric signature of Majorana zero modes in a T-typed double-quantum-dot structure
Cong Wang(王聪) and Xiao-Qi Wang(王晓琦). Chin. Phys. B, 2023, 32(3): 037304.
[2] Temporal response of laminated graded-bandgap GaAs-based photocathode with distributed Bragg reflection structure: Model and simulation
Zi-Heng Wang(王自衡), Yi-Jun Zhang(张益军), Shi-Man Li(李诗曼), Shan Li(李姗), Jing-Jing Zhan(詹晶晶), Yun-Sheng Qian(钱芸生), Feng Shi(石峰), Hong-Chang Cheng(程宏昌), Gang-Cheng Jiao(焦岗成), and Yu-Gang Zeng(曾玉刚). Chin. Phys. B, 2022, 31(9): 098505.
[3] Influence of Rashba spin-orbit coupling on Josephson effect in triplet superconductor/two-dimensional semiconductor/triplet superconductor junctions
Bin-Hao Du(杜彬豪), Man-Ni Chen(陈嫚妮), and Liang-Bin Hu(胡梁宾). Chin. Phys. B, 2022, 31(7): 077201.
[4] Group velocity matters for accurate prediction of phonon-limited carrier mobility
Qiao-Lin Yang(杨巧林), Hui-Xiong Deng(邓惠雄), Su-Huai Wei(魏苏淮), and Jun-Wei Luo(骆军委). Chin. Phys. B, 2021, 30(8): 087201.
[5] Effects of interface bound states on the shot noise in normal metal-low-dimensional Rashba semiconductor tunnel junctions with induced s-wave pairing potential
Wen-Xiang Chen(陈文祥), Rui-Qiang Wang(王瑞强), Liang-Bin Hu(胡梁宾). Chin. Phys. B, 2019, 28(5): 057201.
[6] Influence of spin-orbit coupling on spin-polarized electronic transport in magnetic semiconductor nanowires with nanosized sharp domain walls
Lian Liu(刘恋), Wen-Xiang Chen(陈文祥), Rui-Qiang Wang(王瑞强), Liang-Bin Hu(胡梁宾). Chin. Phys. B, 2018, 27(4): 047201.
[7] Spin-dependent balance equations in spintronics
Zheng-Chuan Wang(王正川). Chin. Phys. B, 2018, 27(1): 016701.
[8] Unified semiclassical approach to electronic transport from diffusive to ballistic regimes
Hao Geng(耿浩), Wei-Yin Deng(邓伟胤), Yue-Jiao Ren(任月皎), Li Sheng(盛利), Ding-Yu Xing(邢定钰). Chin. Phys. B, 2016, 25(9): 097201.
[9] Bound states of Dirac fermions in monolayer gapped graphene in the presence of local perturbations
Mohsen Yarmohammadi, Malek Zareyan. Chin. Phys. B, 2016, 25(6): 068105.
[10] An easy and efficient way to treat Green's function for nano-devices with arbitrary shapes and multi-terminal configurations
Yang Mou(杨谋), Ran Xian-Jian(冉先进), Cui Yan(崔岩) and Wang Rui-Qiang(王瑞强) . Chin. Phys. B, 2011, 20(9): 097201.
[11] Influence of varied doping structure on photoemissive property of photocathode
Niu Jun(牛军), Zhang Yi-Jun(张益军), Chang Ben-Kang(常本康), and Xiong Ya-Juan(熊雅娟) . Chin. Phys. B, 2011, 20(4): 044209.
[12] Electron tunneling in single layer graphene with an energy gap
Xu Xu-Guang(徐旭光), Zhang Chao(张潮), Xu Gong-Jie(徐公杰), and Cao Jun-Cheng(曹俊诚). Chin. Phys. B, 2011, 20(2): 027201.
[13] Intrinsic Hall effect and separation of Rashba and Dresselhaus spin splittings in semiconductor quantum wells
Song Hong-Zhou(宋红州), Zhang Ping(张平), Duan Su-Qing(段素青), and Zhao Xian-Geng(赵宪庚). Chin. Phys. B, 2006, 15(12): 3019-3025.
[14] Understanding of impact of carbon doping on background carrier conduction in GaN
Zhenxing Liu(刘振兴), Liuan Li(李柳暗), Jinwei Zhang(张津玮), Qianshu Wu(吴千树), Yapeng Wang(王亚朋), Qiuling Qiu(丘秋凌), Zhisheng Wu(吴志盛), and Yang Liu(刘扬). Chin. Phys. B, 2021, 30(10): 107201.
No Suggested Reading articles found!