Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(12): 126801    DOI: 10.1088/1674-1056/19/12/126801
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

The effect of deposition temperature on the intermixing and microstructure of Fe/Ni thin film

Chen Shang-Da(陈尚达)a)b), Wang Tao(王涛)a)b), Zheng De-Li(郑德立)a)b), and Zhou Yi-Chun(周益春)a)b)
Faculty of Materials, Photoelectronics and Physics, Xiangtan University, Xiangtan 411105, China; b Key Laboratory of Low-Dimensional Materials & Application Technology, Ministry of Education, Xiangtan 411105, China
Abstract  The physical vapour deposition of Ni atoms on $\alpha$-Fe(001) surface under different deposition temperatures were simulated by molecular dynamics to study the intermixing and microstructure of the interfacial region. The results indicate that Ni atoms hardly penetrate into Fe substrate while Fe atoms easily diffuse into Ni deposition layers. The thickness of the intermixing region is temperature-dependent, with high temperatures yielding larger thicknesses. The deposited layers are mainly composed of amorphous phase due to the abnormal deposition behaviour of Ni and Fe. In the deposited Ni-rich phase, the relatively stable metallic compound B2 structured FeNi is found under high deposition temperature conditions.
Keywords:  molecular dynamics      physical vapour deposition      Ni/Fe thin film      temperature effect  
Received:  16 December 2009      Revised:  16 March 2010      Accepted manuscript online: 
PACS:  68.55.-a (Thin film structure and morphology)  
  81.15.Aa (Theory and models of film growth)  
Fund: Project supported by the National Natural Science Foundation for Young Scientists of China (Grant No. 10702058) and the China Postdoctoral Science Foundation (Grant No. 20090451100).

Cite this article: 

Chen Shang-Da(陈尚达), Wang Tao(王涛), Zheng De-Li(郑德立), and Zhou Yi-Chun(周益春) The effect of deposition temperature on the intermixing and microstructure of Fe/Ni thin film 2010 Chin. Phys. B 19 126801

[1] Freund L B and Suresh S 2003 Thin Film Materials: Stress, Defect Formation and Surface Evolution (Cambridge: Cambridge University Press) p. 2
[2] Ma Z S, Long S G, Wang B H, Pan Y and Zhou Y C 2008 Materials Protection 41 1 (in Chinese)
[3] Pan Y, Zhou Y C, Zhou Z F, Huang Y L, Liu Y G and Sun C Q 2007 Trans. Non. Met. Soc. China 17 1225
[4] Ma Z S, Long S G, Zhang X B, Pan Y and Zhou Y C 2007 Trans. Non. Met. Soc. China 17 818
[5] Chang Y Y and Wang D Y 2005 Surf. Coat. Technol. 200 2187
[6] Gavrila M, Millet J P, Mazille H, Marchandise D and Cuntz J M 2000 Surf. Coat. Technol. 123 164
[7] Liu M L, Zhang Z Y, Li Wei, Zhao Q, Qi Y and Zhang L 2009 Acta Phys. Sin. 58 199 (in Chinese)
[8] Wang L J, Teng J and Yu G H 2006 Acta Phys. Sin. 55 4282 (in Chinese)
[9] Yunsic S, Valery B, Blas P, Voter A F and Amar J G 2008 Phys. Rev. Lett. 101 116101
[10] Charles M G and James A S 2002 Thin Solid Films 419 18
[11] Francis M F, Neurock M N, Zhou X W, Quan J J, Wadley H N G and Edmund B 2008 J. Appl. Phys. 104 304310
[12] Kim S P, Lee S C, Lee K R and Chung Y C 2008 Acta Mater. 56 1011
[13] Zhang L, Zhang C B and Qi Y 2007 Chin. Phys. 16 77
[14] Liu H R, Liu R S, Zhang A L, Hou Z Y, Wang X and Tian Z A 2007 Chin. Phys. 16 3747
[15] Daw M S and Baskes M I 1984 Phys. Rev. B 29 6443
[16] Foiles S M, Baskes M I and Daw M S 1986 Phys. Rev. B 33 7983
[17] Mishin Y, Mehl M J and Papaconstantopoulos D A 2005 Acta Mater. 53 4029
[18] Mutasa B and Farkas D 1998 Surf. Sci. 415 312
[19] Mishin Y and Farkas D 1999 Phys. Rev. B 59 3393
[20] Xie X W and Guo M L 1999 Fundamentals of Materials Science (Beijing: Beijing University of Aeronautics and Astronautics Press) p. 115
[21] Sridharan K and Sheppard K 1997 J. Appl. Electrochem. 27 1198
[22] Kang J C and Lalvani S B 1995 J. Appl. Electrochem. 25 376
[23] Dolati A G, Ghorbani M and Afshar A 2003 Surf. Coat. Technol. 166 105
[24] Honeycutt J D and Andersen H C 1987 J. Phys. Chem. 91 4950
[25] Myagkov V G, Zhigalov V C, Bykova L E and Bondarenko G N 2006 J. Magn. Magn. Mater. 305 534
[1] Molecular dynamics study of interactions between edge dislocation and irradiation-induced defects in Fe–10Ni–20Cr alloy
Tao-Wen Xiong(熊涛文), Xiao-Ping Chen(陈小平), Ye-Ping Lin(林也平), Xin-Fu He(贺新福), Wen Yang(杨文), Wang-Yu Hu(胡望宇), Fei Gao(高飞), and Hui-Qiu Deng(邓辉球). Chin. Phys. B, 2023, 32(2): 020206.
[2] Formation of nanobubbles generated by hydrate decomposition: A molecular dynamics study
Zilin Wang(王梓霖), Liang Yang(杨亮), Changsheng Liu(刘长生), and Shiwei Lin(林仕伟). Chin. Phys. B, 2023, 32(2): 023101.
[3] Adsorption dynamics of double-stranded DNA on a graphene oxide surface with both large unoxidized and oxidized regions
Mengjiao Wu(吴梦娇), Huishu Ma(马慧姝), Haiping Fang(方海平), Li Yang(阳丽), and Xiaoling Lei(雷晓玲). Chin. Phys. B, 2023, 32(1): 018701.
[4] Prediction of flexoelectricity in BaTiO3 using molecular dynamics simulations
Long Zhou(周龙), Xu-Long Zhang(张旭龙), Yu-Ying Cao(曹玉莹), Fu Zheng(郑富), Hua Gao(高华), Hong-Fei Liu(刘红飞), and Zhi Ma(马治). Chin. Phys. B, 2023, 32(1): 017701.
[5] Effect of spatial heterogeneity on level of rejuvenation in Ni80P20 metallic glass
Tzu-Chia Chen, Mahyuddin KM Nasution, Abdullah Hasan Jabbar, Sarah Jawad Shoja, Waluyo Adi Siswanto, Sigiet Haryo Pranoto, Dmitry Bokov, Rustem Magizov, Yasser Fakri Mustafa, A. Surendar, Rustem Zalilov, Alexandr Sviderskiy, Alla Vorobeva, Dmitry Vorobyev, and Ahmed Alkhayyat. Chin. Phys. B, 2022, 31(9): 096401.
[6] Core structure and Peierls stress of the 90° dislocation and the 60° dislocation in aluminum investigated by the fully discrete Peierls model
Hao Xiang(向浩), Rui Wang(王锐), Feng-Lin Deng(邓凤麟), and Shao-Feng Wang(王少峰). Chin. Phys. B, 2022, 31(8): 086104.
[7] Spatial correlation of irreversible displacement in oscillatory-sheared metallic glasses
Shiheng Cui(崔世恒), Huashan Liu(刘华山), and Hailong Peng(彭海龙). Chin. Phys. B, 2022, 31(8): 086108.
[8] Effect of void size and Mg contents on plastic deformation behaviors of Al-Mg alloy with pre-existing void: Molecular dynamics study
Ning Wei(魏宁), Ai-Qiang Shi(史爱强), Zhi-Hui Li(李志辉), Bing-Xian Ou(区炳显), Si-Han Zhao(赵思涵), and Jun-Hua Zhao(赵军华). Chin. Phys. B, 2022, 31(6): 066203.
[9] Strengthening and softening in gradient nanotwinned FCC metallic multilayers
Yuanyuan Tian(田圆圆), Gangjie Luo(罗港杰), Qihong Fang(方棋洪), Jia Li(李甲), and Jing Peng(彭静). Chin. Phys. B, 2022, 31(6): 066204.
[10] Investigation of the structural and dynamic basis of kinesin dissociation from microtubule by atomistic molecular dynamics simulations
Jian-Gang Wang(王建港), Xiao-Xuan Shi(史晓璇), Yu-Ru Liu(刘玉如), Peng-Ye Wang(王鹏业),Hong Chen(陈洪), and Ping Xie(谢平). Chin. Phys. B, 2022, 31(5): 058702.
[11] Impact of thermostat on interfacial thermal conductance prediction from non-equilibrium molecular dynamics simulations
Song Hu(胡松), C Y Zhao(赵长颖), and Xiaokun Gu(顾骁坤). Chin. Phys. B, 2022, 31(5): 056301.
[12] Evolution of defects and deformation mechanisms in different tensile directions of solidified lamellar Ti-Al alloy
Yutao Liu(刘玉涛), Tinghong Gao(高廷红), Yue Gao(高越), Lianxin Li(李连欣), Min Tan(谭敏), Quan Xie(谢泉), Qian Chen(陈茜), Zean Tian(田泽安), Yongchao Liang(梁永超), and Bei Wang(王蓓). Chin. Phys. B, 2022, 31(4): 046105.
[13] Evaluation on performance of MM/PBSA in nucleic acid-protein systems
Yuan-Qiang Chen(陈远强), Yan-Jing Sheng(盛艳静), Hong-Ming Ding(丁泓铭), and Yu-Qiang Ma(马余强). Chin. Phys. B, 2022, 31(4): 048701.
[14] Molecular dynamics simulations of A-DNA in bivalent metal ions salt solution
Jingjing Xue(薛晶晶), Xinpeng Li(李新朋), Rongri Tan(谈荣日), and Wenjun Zong(宗文军). Chin. Phys. B, 2022, 31(4): 048702.
[15] Effect of the number of defect particles on the structure and dispersion relation of a two-dimensional dust lattice system
Rangyue Zhang(张壤月), Guannan Shi(史冠男), Hanyu Tang(唐瀚宇), Yang Liu(刘阳), Yanhong Liu(刘艳红), and Feng Huang(黄峰). Chin. Phys. B, 2022, 31(3): 035204.
No Suggested Reading articles found!