Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(12): 127001    DOI: 10.1088/1674-1056/19/12/127001
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Magnetic properties of nitrogen doped ZnO

Shi Li-Bin(史力斌), Jin Jian-Wei(金健维), and Zhang Tian-Qian(张天羡)
Department of Physics, Bohai University, Jinzhou 121013, Liaoning Province, China
Abstract  Using the first principle method based on density functional theory, this paper studies the electronic structure and the ferromagnetic stability in N-doped ZnO. The calculated results based on local density approximation (LDA) and LDA+U method show that ferromagnetism coupling between N atoms is more energetically favourable for eight geometrically distinct configurations. The dominant ferromagnetic interaction is due to the hybridization between O 2p and N 2p. The origin of the ferromagnetic state in N doped ZnO is discussed by analysing coupling between N 2p levels. We also analyse N dopant concentration and lattice strain effect on ferromagnetism.
Keywords:  first principles      semiconductor      ferromagnetism      strain  
Received:  19 May 2010      Revised:  15 July 2010      Accepted manuscript online: 
PACS:  61.72.S- (Impurities in crystals)  
  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
  71.20.Nr (Semiconductor compounds)  
  75.50.Dd (Nonmetallic ferromagnetic materials)  
  75.50.Pp (Magnetic semiconductors)  
Fund: Project supported by the Science Foundation from the Educational Department of Liaoning Province of China (Grant No. L2010003).

Cite this article: 

Shi Li-Bin(史力斌), Jin Jian-Wei(金健维), and Zhang Tian-Qian(张天羡) Magnetic properties of nitrogen doped ZnO 2010 Chin. Phys. B 19 127001

[1] Pan F, Song C, Liu X J, Yang Y C and Zeng F 2008 Mater. Sci. Eng. R 62 1
[2] Matsukura F, Ohno H, Shen A and Sugawara Y 1998 Phys. Rev. B 57 R 2037
[3] Schallenberg T and Munekata H 2006 Appl. Phys. Lett. 89 042507
[4] Nazmul A M, Sugahara S and Tanaka M 2003 Phys. Rev. B 67 241308
[5] Shi L B, Kang L, Jin J W and Chi F 2009 Chin. Phys. B 18 4418
[6] Shi L B, Cheng S, Li R B and Li M B 2009 Acta Phys. Sin. 58 6446 (in Chinese)
[7] Wang Q, Sun Q, Jena Puru and Kawazoe Y 2009 Phys. Rev. B 79 115407
[8] Wakano T, Fujimura N, Morinaga Y, Abe N, Ashida A and Ito T 2001 Physica C 10 260
[9] Yin Z, Chen N, Yang F, Song S, Chai C, Zhong J, Qian H and Ibrahim K 2005 Solid State Commun. 135 430
[10] Snure M, Kumar D and Tiwari A 2009 Appl. Phys. Lett. 94 012510
[11] Herng T S, Lau S P, Wang L, Zhao B C, Yu S F, Tanemura M, Akaike A and Teng T S 2009 Appl. Phys. Lett. 95 012505
[12] Zhou S Q, Xu Q Y and Potzger K 2008 Appl. Phys. Lett. 93 232507
[13] Pan H, Yi J B, Shen L, Wu R Q and Yang J H 2007 Phys. Rev. Lett. 99 127201
[14] Shen L, Wu R Q, Pan H, Peng G W, Yang M, Sha Z D and Feng Y P 2008 Phys. Rev. B 78 073306
[15] Payne M C, Teter M P, Allan D C, Arias T A and Joannopoulos J D 1992 Rev. Mod. Phys. 64 1045
[16] Anisimov V I, Zaanen J and Andersen O K 1991 Phys. Rev. B 44 943
[17] Nov'ak P, Boucher F and Greeier P 2001 Phys. Rev. B 63 235114
[18] Mohn P, Persson C, Blaha P and Schwarz K 2001 Phys. Rev. Lett. 87 196401
[19] Yang Y, Qi J, Zhang Y, Liao Q, Tang L and Qin Z 2008 Appl. Phys. Lett. 92 183117
[20] Ley L, Pollak R A, Mcfeely F R, Kowalczyk S P and Shirley D A 1974 Phys. Rev. B 9 600
[21] Lu Z L, Hsu H S and Tzeng Y H 2009 Appl. Phys. Lett. 94 152507
[22] Kan E J, Yuan L F and Yang J 2007 J. Appl. Phys. 102 033915
[23] Dalpian G M, Yan Y and Wei S H 2006 Appl. Phys. Lett. 89 011907
[24] Walsh A, Silva J L F and Wei S H 2008 Phys. Rev. Lett. 100 256401
[25] Zhou G C, Sun L Z, Zhong X L, Chen X, Wei L and Wang J B 2007 Phys. Lett. A 368 112
[26] Yakunin A M, Silov A Y, Koenraad P M and Tang J M 2007 Nature Materials 6 512
[27] Li Y F, Yao B, Lu Y M, Cong C X, Zhang Z Z, Gai Y Q and Zheng C J 2007 Appl. Phys. Lett. 91 021915
[28] Liu X J, Song C, Zeng F, Pan F, He B and Yan W S 2008 J. Appl. Phys. 103 093911
[1] First-principles study of the bandgap renormalization and optical property of β-LiGaO2
Dangqi Fang(方党旗). Chin. Phys. B, 2023, 32(4): 047101.
[2] Strain compensated type II superlattices grown by molecular beam epitaxy
Chao Ning(宁超), Tian Yu(于天), Rui-Xuan Sun(孙瑞轩), Shu-Man Liu(刘舒曼), Xiao-Ling Ye(叶小玲), Ning Zhuo(卓宁), Li-Jun Wang(王利军), Jun-Qi Liu(刘俊岐), Jin-Chuan Zhang(张锦川), Shen-Qiang Zhai(翟慎强), and Feng-Qi Liu(刘峰奇). Chin. Phys. B, 2023, 32(4): 046802.
[3] Mode characteristics of VCSELs with different shape and size oxidation apertures
Xin-Yu Xie(谢新宇), Jian Li(李健), Xiao-Lang Qiu(邱小浪), Yong-Li Wang(王永丽), Chuan-Chuan Li(李川川), Xin Wei(韦欣). Chin. Phys. B, 2023, 32(4): 044206.
[4] Prediction of one-dimensional CrN nanostructure as a promising ferromagnetic half-metal
Wenyu Xiang(相文雨), Yaping Wang(王亚萍), Weixiao Ji(纪维霄), Wenjie Hou(侯文杰),Shengshi Li(李胜世), and Peiji Wang(王培吉). Chin. Phys. B, 2023, 32(3): 037103.
[5] High-temperature ferromagnetism and strong π-conjugation feature in two-dimensional manganese tetranitride
Ming Yan(闫明), Zhi-Yuan Xie(谢志远), and Miao Gao(高淼). Chin. Phys. B, 2023, 32(3): 037104.
[6] Strain engineering and hydrogen effect for two-dimensional ferroelectricity in monolayer group-IV monochalcogenides MX (M =Sn, Ge; X=Se, Te, S)
Maurice Franck Kenmogne Ndjoko, Bi-Dan Guo(郭必诞), Yin-Hui Peng(彭银辉), and Yu-Jun Zhao(赵宇军). Chin. Phys. B, 2023, 32(3): 036802.
[7] Li2NiSe2: A new-type intrinsic two-dimensional ferromagnetic semiconductor above 200 K
Li-Man Xiao(肖丽蔓), Huan-Cheng Yang(杨焕成), and Zhong-Yi Lu(卢仲毅). Chin. Phys. B, 2023, 32(3): 037501.
[8] Crystal and electronic structure of a quasi-two-dimensional semiconductor Mg3Si2Te6
Chaoxin Huang(黄潮欣), Benyuan Cheng(程本源), Yunwei Zhang(张云蔚), Long Jiang(姜隆), Lisi Li(李历斯), Mengwu Huo(霍梦五), Hui Liu(刘晖), Xing Huang(黄星), Feixiang Liang(梁飞翔), Lan Chen(陈岚), Hualei Sun(孙华蕾), and Meng Wang(王猛). Chin. Phys. B, 2023, 32(3): 037802.
[9] Experiment and simulation on degradation and burnout mechanisms of SiC MOSFET under heavy ion irradiation
Hong Zhang(张鸿), Hongxia Guo(郭红霞), Zhifeng Lei(雷志锋), Chao Peng(彭超), Zhangang Zhang(张战刚), Ziwen Chen(陈资文), Changhao Sun(孙常皓), Yujuan He(何玉娟), Fengqi Zhang(张凤祁), Xiaoyu Pan(潘霄宇), Xiangli Zhong(钟向丽), and Xiaoping Ouyang(欧阳晓平). Chin. Phys. B, 2023, 32(2): 028504.
[10] Bismuth doping enhanced tunability of strain-controlled magnetic anisotropy in epitaxial Y3Fe5O12(111) films
Yunpeng Jia(贾云鹏), Zhengguo Liang(梁正国), Haolin Pan(潘昊霖), Qing Wang(王庆), Qiming Lv(吕崎鸣), Yifei Yan(严轶非), Feng Jin(金锋), Dazhi Hou(侯达之), Lingfei Wang(王凌飞), and Wenbin Wu(吴文彬). Chin. Phys. B, 2023, 32(2): 027501.
[11] A field-effect WSe2/Si heterojunction diode
Rui Yu(余睿), Zhe Sheng(盛喆), Wennan Hu(胡文楠), Yue Wang(王越), Jianguo Dong(董建国), Haoran Sun(孙浩然), Zengguang Cheng(程增光), and Zengxing Zhang(张增星). Chin. Phys. B, 2023, 32(1): 018505.
[12] Single-mode lasing in a coupled twin circular-side-octagon microcavity
Ke Yang(杨珂), Yue-De Yang(杨跃德), Jin-Long Xiao(肖金龙), and Yong-Zhen Huang(黄永箴). Chin. Phys. B, 2022, 31(9): 094205.
[13] Lateral characteristics improvements of DBR laser diode with tapered Bragg grating
Qi-Qi Wang(王琦琦), Li Xu(徐莉), Jie Fan(范杰), Hai-Zhu Wang(王海珠), and Xiao-Hui Ma(马晓辉). Chin. Phys. B, 2022, 31(9): 094204.
[14] Theoretical study of M6X2 and M6XX' structure (M = Au, Ag; X,X' = S, Se): Electronic and optical properties, ability of photocatalytic water splitting, and tunable properties under biaxial strain
Jiaqi Li(李嘉琪), Xinlu Cheng(程新路), and Hong Zhang(张红). Chin. Phys. B, 2022, 31(9): 097101.
[15] Growth of high material quality InAs/GaSb type-II superlattice for long-wavelength infrared range by molecular beam epitaxy
Fang-Qi Lin(林芳祁), Nong Li(李农), Wen-Guang Zhou(周文广), Jun-Kai Jiang(蒋俊锴), Fa-Ran Chang(常发冉), Yong Li(李勇), Su-Ning Cui(崔素宁), Wei-Qiang Chen(陈伟强), Dong-Wei Jiang(蒋洞微), Hong-Yue Hao(郝宏玥), Guo-Wei Wang(王国伟), Ying-Qiang Xu(徐应强), and Zhi-Chuan Niu(牛智川). Chin. Phys. B, 2022, 31(9): 098504.
No Suggested Reading articles found!