Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(12): 126401    DOI: 10.1088/1674-1056/19/12/126401
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Dendritic sidebranches of a binary system with enforced flow

Li Xiang-Ming(李向明) and Wang Zi-Dong(王自东)
School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
Abstract  In the present paper, the problem of sidebranches in the binary dendritic growth with enforced flow is studied. The positions of the first sidebranch and spacing of dendritic sidebranches are presented. For the neutral stable mode of dendritic growth, effects of various parameters on sidebranches are analysed. Our result shows that sidebranches are produced behind a critical point ξ'C.
Keywords:  binary system      sidebranches      enforced flow      pattern formation  
Received:  19 March 2010      Revised:  23 June 2010      Accepted manuscript online: 
PACS:  68.70.+w (Whiskers and dendrites (growth, structure, and nonelectronic properties))  
Fund: Project supported by the High Technology Research and Development Programme of China (Grant No. 2007AA03Z108).

Cite this article: 

Li Xiang-Ming(李向明) and Wang Zi-Dong(王自东) Dendritic sidebranches of a binary system with enforced flow 2010 Chin. Phys. B 19 126401

[1] Hurle D J T ed. 1993 Handbook of Crystal Growth, Vol. 1: Fundamental, Part B: Transport and Stability (Amsterdam: Elsevier)
[2] Chen M W, Lan M, Wang Y Y, Wang Z D, Xu J J and Yuan L 2009 Chin. Phys. B 18 1691
[3] Cai L C and Xi F 2009 Chin. Phys. B 18 2898
[4] Chen M W, Wang Z D and Sun R J 2007 Acta Phys. Sin. 56 1819 (in Chinese)
[5] Kessler D A, Koplik J and Levin H 1988 Adv. Phys. 37 255
[6] Wang J C, Wang Z J and Yang G C 2008 Acta Phys. Sin. 57 1246 (in Chinese)
[7] Lan C W and Shih C J 2004 J. Cryst. Growth 264 472
[8] Ben Amar M and Pomeau Y 1986 Europhys. Lett. 2 307
[9] Barbieri A, Hong D C and Langer J S 1987 Phys. Rev. A 35 1802
[10] Kessler D A and Levine H 1986 Phys. Rev. Lett. 57 3069
[11] Kessler D, Koplik J and Levine H 1988 Adv. Phys. 37 255
[12] Barber M N, Barbieri A and Langer J S 1987 Phys. Rev. A 36 3340
[13] Langer J S 1987 Phys. Rev. A 36 3350
[14] Xu J J 1991 Phys. Rev. A 43 930
[15] Xu J J 1997 Interfacial Wave Theory of Pattern Formation: Selection of Dendrite and Viscous Fingering in a Hele-Shaw Flow (New York: Springer) pp. 125–213
[16] Xu J J 2000 Dynamical Theory of Dendritic Growth in Convective Flow (New York: Springer) pp. 131–231
[17] Chen Y Q, Tang X X and Xu J J 2009 Chin. Phys. B 18 671
[18] Chen Y Q, Tang X X and Xu J J 2009 Chin. Phys. B 18 685
[19] Xu J J and Yu D S 1999 J. Cryst. Growth 198–199 43
[20] Li X M, Chen M W and Wang Z D 2008 J. Univ. Sci. Technol. Beijing 30 652 (in Chinese)
[21] Li X M, Wang Z D and Wang Q Y 2009 J. Appl. Phys. 106 053511
[22] Ivantsov G P 1947 Dokl. Akad. Nauk SSSR 58 567
[23] Hoffman J D 1992 Numerical Methods for Engineers and Scientists (New York: Marcel Dekker, Inc.) pp. 1–320
[24] Liu Y C, Roux B and Lan C W 2007 Int. J. Heat Mass Trans. 50 5031
[25] Yasuda H, Ohnaka I, Yano T and Tanaka H 1996 ISIJ Int. 36 S167
[26] Corrigan D P, Koss M B, LaCombe J C, de Jager K D, Tennenhouse L A and Glicksman M E 1999 Phys. Rev. E 60 7217
[1] Phase-field study of spinodal decomposition under effect of grain boundary
Ying-Yuan Deng(邓英远), Can Guo(郭灿), Jin-Cheng Wang(王锦程), Qian Liu(刘倩), Yu-Ping Zhao(赵玉平), and Qing Yang(杨卿). Chin. Phys. B, 2021, 30(8): 088101.
[2] Applying a global pulse disturbance to eliminate spiral waves in models of cardiac muscle
Jian Gao(高见), Changgui Gu(顾长贵), and Huijie Yang(杨会杰). Chin. Phys. B, 2021, 30(7): 070501.
[3] Pattern formation in superdiffusion Oregonator model
Fan Feng(冯帆), Jia Yan(闫佳), Fu-Cheng Liu(刘富成), Ya-Feng He(贺亚峰). Chin. Phys. B, 2016, 25(10): 104702.
[4] Numerical simulation and analysis of complex patterns in a two-layer coupled reaction diffusion system
Li Xin-Zheng (李新政), Bai Zhan-Guo (白占国), Li Yan (李燕), He Ya-Feng (贺亚峰), Zhao Kun (赵昆). Chin. Phys. B, 2015, 24(4): 048201.
[5] Control of the patterns by using time-delayed feedback near the codimension-three Turing–Hopf–Wave bifurcations
Wang Hui-Juan (王慧娟), Wang Yong-Jie (王永杰), Ren Zhi (任芝). Chin. Phys. B, 2013, 22(12): 120503.
[6] Controlling the transition between Turing and antispiral patterns by using time-delayed-feedback
He Ya-Feng(贺亚峰), Liu Fu-Cheng(刘富成), Fan Wei-Li(范伟丽), and Dong Li-Fang(董丽芳) . Chin. Phys. B, 2012, 21(3): 034701.
[7] Spatial pattern formation of a ratio-dependent predator–prey model
Lin Wang(林望). Chin. Phys. B, 2010, 19(9): 090206.
[8] Three-dimensional interfacial wave theory of dendritic growth: (I). multiple variables expansion solutions
Chen Yong-Qiang(陈永强), Tang Xiong-Xin(唐熊忻), and Xu Jian-Jun(徐鉴君). Chin. Phys. B, 2009, 18(2): 671-685.
[9] Three-dimensional interfacial wave theory of dendritic growth: (II). non-axi-symmetric global wave modes and selection criterion of pattern formation
Chen Yong-Qiang(陈永强), Tang Xiong-Xin(唐熊忻), and Xu Jian-Jun(徐鉴君). Chin. Phys. B, 2009, 18(2): 686-698.
[10] Laser-induced pattern formation from homogeneous polyisoprene solutions
Lin Dian-Yang(林殿阳), Li Ming(黎明), Wang Shu-Jie(王淑杰), and Lü Zhi-Wei(吕志伟). Chin. Phys. B, 2008, 17(6): 2156-2159.
[11] The two-dimensional alternative binary L-J system: liquid--gas phase diagram
Zhang Zhi (张 陟), Chen Li-Rong (陈立溁). Chin. Phys. B, 2003, 12(1): 79-83.
No Suggested Reading articles found!