|
|
Punishment in optional public goods games |
Wang Zhen(王震)a),Xu Zhao-Jin(许照锦)b), and Zhang Lian-Zhong(张连众)a)† |
a School of Physics, Nankai University, Tianjin 300071, China; b School of Science, Tianjin University of Technology, Tianjin 300384, China |
|
|
Abstract In this work, the optional public goods games with punishment are studied. By adopting the approximate best response dynamics, a micro model is given to explain the evolutionary process. Simultaneously, the magnitude of rationality is also considered. Under the condition of bounded rationality which provides a light to interpret phenomena in human society, the model leads to two types of equilibriums. One is the equilibrium without punishers and the other is the equilibrium including only punishers and cooperators. In addition, the effects of rationality on equilibriums are briefly investigated.
|
Received: 17 May 2010
Revised: 28 June 2010
Accepted manuscript online:
|
PACS:
|
02.50.Le
|
(Decision theory and game theory)
|
|
87.23.Ge
|
(Dynamics of social systems)
|
|
87.23.Kg
|
(Dynamics of evolution)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 10672081), and the Center for Asia Studies of Nankai University (Grant No. 2010-5). |
Cite this article:
Wang Zhen(王震),Xu Zhao-Jin(许照锦), and Zhang Lian-Zhong(张连众) Punishment in optional public goods games 2010 Chin. Phys. B 19 110201
|
[1] |
Hardin G 1968 Science 62 1243 bibitem
|
[2] |
Hardin G 1998 Science 280 682 bibitem
|
[3] |
Axelrod R and Hamilton W D 1981 Science 211 1390 bibitem
|
[4] |
Trivers R L 1971 Q. Rev. Biol. 46 35 bibitem
|
[5] |
Nowak M A and Sigmund K 1998 Nature 393 573 bibitem
|
[6] |
Nowak M A and Sigmund K 2005 Nature 437 1291 bibitem
|
[7] |
Fehr E and Gachter S 2002 Nature 415 137 bibitem
|
[8] |
Clutton-Brock T H and Parke G A 1995 Nature 373 209 bibitem
|
[9] |
Boyd R, Gintis R, Bowles S and Richerson P J 2003 Proc. Natl. Acad. Sci. USA 100 3531 bibitem
|
[10] |
Fehr E and Fischbacher U 2003 Nature 425 785 bibitem
|
[11] |
Zhang H F, Yang H X, Du W B, Wang B H and Cao X B 2010 Physica A 389 1099 bibitem
|
[12] |
Hauert C and Doebel M 2004 Nature 428 643 bibitem
|
[13] |
Szab'o G and Hauert C 2002 Phys. Rev. Lett. 89 118101 bibitem
|
[14] |
Cao X B, Du W B and Rong Z H 2010 Physica A 389 1273 bibitem
|
[15] |
Guan J Y, Wu Z X and Wang Y H 2007 Phys. Rev. E 76 056101 bibitem
|
[16] |
Shi D M, Yang H X, Hu M B, Du W B, Wang B H and Cao X B 2009 Physica A 388 4646 bibitem
|
[17] |
Du W B, Cao X B, Zhao L and Hu M B 2009 Physica A 388 4509 bibitem
|
[18] |
Du W B, Cao X B, Yang H X and Hu M B 2010 Chin. Phys. B 19 010204 bibitem
|
[19] |
Du W B, Cao X B and Hu M B 2009 Physica A 388 5005 bibitem
|
[20] |
Hauert C, De Monte S, Hofbauer J and Sigmund K 2002 Science 296 1129 bibitem
|
[21] |
Hauert C, De Monte S, Hofbauer J and Sigmund K 2002 J. Theor. Biol. 218 187 bibitem
|
[22] |
Semmann D, Krambeck H J and Milinski M 2003 Nature 425 390 bibitem
|
[23] |
Peng D, Yang H X, Wang W X, Chen G R and Wang B H 2010 Eur. Phys. J. B 73 455 bibitem
|
[24] |
Fehr E and Gachter S 2000 Am. Econ. Rev. 90 980 bibitem
|
[25] |
Boyd R and Richerson P J 1992 Ethol. Sociobiol. 13 171 bibitem
|
[26] |
Fowler J 2005 Proc. Natl. Acad. Sci. USA 102 7047 bibitem
|
[27] |
Brandt H, Hauert C and Sigmund K 2005 Proc. Natl. Acad. Sci. USA 103 495 bibitem
|
[28] |
Henrich J and Boyd R 2001 J. Theor. Biol. 208 79 bibitem
|
[29] |
Sigmund K, Hauert C and Nowak M A 2001 Proc. Natl. Acad. Sci. USA 98 10757 bibitem
|
[30] |
de Quervain D J, Fischbacher U, Treyer V, Schellhammer M, Schnyder U, Buck A and Fehr E 2004 Science 305 1254 bibitem
|
[31] |
Traulsen A, Hauert C, De Silva H, Nowak M A and Sigmund K 2009 Proc. Natl. Acad. Sci. USA 106 709 bibitem
|
[32] |
Gintis H 2000 J. Theor. Biol. 206 169 bibitem
|
[33] |
Gintis H 2003 J. Theor. Biol. 220 407 bibitem
|
[34] |
Bowles S and Gintis H 2004 Theor. Popul. Biol. 65 17 bibitem
|
[35] |
Brandt H, Hauert C and Sigmund K 2003 Proc. R. Soc. B 270 1099 bibitem
|
[36] |
Hofbauer J 2000 Selection 1 81 bibitem
|
[37] |
Nash J 1950 Ph.D Thesis, Department of Mathematics, Princeton University
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|