Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(3): 036101    DOI: 10.1088/1674-1056/ab695b
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Fractional variant of Stokes-Einstein relation in aqueous ionic solutions under external static electric fields

Gan Ren(任淦), Shikai Tian(田时开)
Departments of Physics&Key Laboratory of Photonic and Optical Detection in Civil Aviation, Civil Aviation Flight University of China, Guanghan 618307, China
Abstract  Both ionic solutions under an external applied static electric field E and glassy-forming liquids under undercooled state are in non-equilibrium state. In this work, molecular dynamics (MD) simulations with three aqueous alkali ion chloride (NaCl, KCl, and RbCl) ionic solutions are performed to exploit whether the glass-forming liquid analogous fractional variant of the Stokes-Einstein relation also exists in ionic solutions under E. Our results indicate that the diffusion constant decouples from the structural relaxation time under E, and a fractional variant of the Stokes-Einstein relation is observed as well as a crossover analogous to the glass-forming liquids under cooling. The fractional variant of the Stokes-Einstein relation is attributed to the E introduced deviations from Gaussian and the nonlinear effect.
Keywords:  ionic solutions      Stokes-Einstein relation      non-equilibrium steady state      molecular dynamics simulation  
Received:  03 August 2019      Revised:  23 December 2019      Accepted manuscript online: 
PACS:  61.20.Ja (Computer simulation of liquid structure)  
  78.30.cd (Solutions and ionic liquids)  
  82.20.Wt (Computational modeling; simulation)  
Fund: Project supported by the Science Foundation of Civil Aviation Flight University of China (Grant Nos. J2019-059 and JG2019-19).
Corresponding Authors:  Gan Ren     E-mail:  rengan@alumni.itp.ac.cn

Cite this article: 

Gan Ren(任淦), Shikai Tian(田时开) Fractional variant of Stokes-Einstein relation in aqueous ionic solutions under external static electric fields 2020 Chin. Phys. B 29 036101

[1] Equey J F, Müller S, Tsukada A and Haas O 1989 J. Appl. Electrochem. 19 65
[2] Yoshida H, Sone M, Mizushima A, Abe K, Tao X T, Ichihara S and Miyata S 2002 Chem. Lett. 31 1086
[3] Conway B 1992 Chem. Soc. Rev. 21 253
[4] Gurau M C, Lim S M, Castellana E T, Albertorio F, Kataoka S and Cremer P S 2004 J. Am. Chem. Soc. 126 10522
[5] Zhang Y and Cremer P S 2006 Curr. Opin. Chem. Biol. 10 658
[6] Debye P and Hückel E 1923 Phys. Z. 24 185
[7] Chialvo A, Cummings P, Cochran H, Simonson J and Mesmer R 1995 J. Chem. Phys. 103 9379
[8] Bian H, Wen X, Li J, Chen H, Han S, Sun X, Song J, Zhuang W and Zheng J 2011 Proc. Natl. Acad. Sci. USA 108 4737
[9] Smith D E and Dang L X 1994 J. Chem. Phys. 100 3757
[10] Sherman D M and Collings M D 2002 Geochem. Trans. 3 102
[11] Zahn D 2004 Phys. Rev. Lett. 92 040801
[12] Ren G and Wang Y T 2015 Chin. Phys. B 24 126402
[13] Swallen S F, Bonvallet P A, McMahon R J and Ediger M D 2003 Phys. Rev. Lett. 90 015901
[14] Mapes M K, Swallen S F and Ediger M D 2006 J. Phys. Chem. B 110 507
[15] White J A 1999 J. Chem. Phys. 111 9352
[16] Barrat J L, Roux J N and Hansen J P 1990 Chem. Phys. 149 197
[17] Thirumalai D and Mountain R D 1993 Phys. Rev. E 47 479
[18] Yi S S, Pan C and Hu Z H 2015 Chin. Phys. B 24 120201
[19] Lee S H and Rasaiah J C 1994 J. Chem. Phys. 101 6964
[20] Koneshan S, Rasaiah J C, Lynden-Bell R and Lee S 1998 J. Phys. Chem. B 102 4193
[21] Koneshan S, Lynden-Bell R and Rasaiah J C 1998 J. Am. Chem. Soc. 120 12041
[22] Kashyap H K, Annapureddy H V, Raineri F O and Margulis C J 2011 J. Phys. Chem. B 115 13212
[23] Ren G, Shi R and Wang Y 2014 J. Phys. Chem. B 118 4404
[24] Murad S 2011 J. Chem. Phys. 134 114504
[25] Lewis L J and Wahnström G 1994 Phys. Rev. E 50 3865
[26] Mallamace F, Broccio M, Corsaro C, Faraone A, Wanderlingh U, Liu L, Mou C Y and Chen S H 2006 J. Chem. Phys. 124 161102
[27] Xu L, Mallamace F, Yan Z, Starr F W, Buldyrev S V and Eugene Stanley H 2009 Nat. Phys. 5 565
[28] Binder K and Kob W 2011 Glassy materials and disordered solids: An introduction to their statistical mechanics (Singapore: World Scientific)
[29] Habasaki J, Leon C and Ngai K 2017 Top. Appl. Phys. 132
[30] Zhou Y H, Han X J and Li J G 2019 J. Non-Cryst. Solids 517 83
[31] Han X J and Schober H R 2011 Phys. Rev. B 83 224201
[32] Li C H, Han X J, Luan Y W and Li J G 2017 Chin. Phys. B 26 016102
[33] Kumar P, Buldyrev S V, Becker S R, Poole P H, Starr F W and Stanley H E 2007 Proc. Natl. Acad. Sci. USA 104 9575
[34] Jeong D, Choi M Y, Kim H J and Jung Y 2010 Phys. Chem. Chem. Phys. 12 2001
[35] Ikeda A and Miyazaki K 2011 Phys. Rev. Lett. 106 015701
[36] Ren G and Sang G 2018 Chin. Phys. B 27 066101
[37] Berendsen H J, van der Spoel D and van Drunen R 1995 Comput. Phys. Commun. 91 43
[38] Van Der Spoel D, Lindahl E, Hess B, Groenhof G, Mark A E and Berendsen H J 2005 J. Comput. Chem. 26 1701
[39] Nosé S 1984 J. Chem. Phys. 81 511
[40] Hoover W G 1985 Phys. Rev. A 31 1695
[41] Essmann U, Perera L, Berkowitz M L, Darden T, Lee H and Pedersen L G 1995 J. Chem. Phys. 103 8577
[42] Anderson J, Ullo J J and Yip S 1987 J. Chem. Phys. 87 1726
[43] Shi R and Wang Y 2013 J. Phys. Chem. B 117 5102
[44] Wolynes P G and Lubchenko V 2012 Structural glasses, supercooled liquids: Theory, experiment and applications (New York: John Wiley & Sons)
[45] Lee S H and Rasaiah J C 1996 J. Phys. Chem. 100 1420
[46] Onsager L and Kim S K 1957 J. Phys. Chem. 61 198
[47] Berthier L and Biroli G 2011 Rev. Mod. Phys. 83 587
[48] Kob W, Donati C, Plimpton S J, Poole P H and Glotzer S C 1997 Phys. Rev. Lett. 79 2827
[1] Molecular dynamics study of interactions between edge dislocation and irradiation-induced defects in Fe–10Ni–20Cr alloy
Tao-Wen Xiong(熊涛文), Xiao-Ping Chen(陈小平), Ye-Ping Lin(林也平), Xin-Fu He(贺新福), Wen Yang(杨文), Wang-Yu Hu(胡望宇), Fei Gao(高飞), and Hui-Qiu Deng(邓辉球). Chin. Phys. B, 2023, 32(2): 020206.
[2] Adsorption dynamics of double-stranded DNA on a graphene oxide surface with both large unoxidized and oxidized regions
Mengjiao Wu(吴梦娇), Huishu Ma(马慧姝), Haiping Fang(方海平), Li Yang(阳丽), and Xiaoling Lei(雷晓玲). Chin. Phys. B, 2023, 32(1): 018701.
[3] Effect of spatial heterogeneity on level of rejuvenation in Ni80P20 metallic glass
Tzu-Chia Chen, Mahyuddin KM Nasution, Abdullah Hasan Jabbar, Sarah Jawad Shoja, Waluyo Adi Siswanto, Sigiet Haryo Pranoto, Dmitry Bokov, Rustem Magizov, Yasser Fakri Mustafa, A. Surendar, Rustem Zalilov, Alexandr Sviderskiy, Alla Vorobeva, Dmitry Vorobyev, and Ahmed Alkhayyat. Chin. Phys. B, 2022, 31(9): 096401.
[4] Strengthening and softening in gradient nanotwinned FCC metallic multilayers
Yuanyuan Tian(田圆圆), Gangjie Luo(罗港杰), Qihong Fang(方棋洪), Jia Li(李甲), and Jing Peng(彭静). Chin. Phys. B, 2022, 31(6): 066204.
[5] Investigation of the structural and dynamic basis of kinesin dissociation from microtubule by atomistic molecular dynamics simulations
Jian-Gang Wang(王建港), Xiao-Xuan Shi(史晓璇), Yu-Ru Liu(刘玉如), Peng-Ye Wang(王鹏业),Hong Chen(陈洪), and Ping Xie(谢平). Chin. Phys. B, 2022, 31(5): 058702.
[6] Evolution of defects and deformation mechanisms in different tensile directions of solidified lamellar Ti-Al alloy
Yutao Liu(刘玉涛), Tinghong Gao(高廷红), Yue Gao(高越), Lianxin Li(李连欣), Min Tan(谭敏), Quan Xie(谢泉), Qian Chen(陈茜), Zean Tian(田泽安), Yongchao Liang(梁永超), and Bei Wang(王蓓). Chin. Phys. B, 2022, 31(4): 046105.
[7] Evaluation on performance of MM/PBSA in nucleic acid-protein systems
Yuan-Qiang Chen(陈远强), Yan-Jing Sheng(盛艳静), Hong-Ming Ding(丁泓铭), and Yu-Qiang Ma(马余强). Chin. Phys. B, 2022, 31(4): 048701.
[8] Molecular dynamics simulations of A-DNA in bivalent metal ions salt solution
Jingjing Xue(薛晶晶), Xinpeng Li(李新朋), Rongri Tan(谈荣日), and Wenjun Zong(宗文军). Chin. Phys. B, 2022, 31(4): 048702.
[9] Molecular dynamics simulations on the wet/dry self-latching and electric fields triggered wet/dry transitions between nanosheets: A non-volatile memory nanostructure
Jianzhuo Zhu(朱键卓), Xinyu Zhang(张鑫宇), Xingyuan Li(李兴元), and Qiuming Peng(彭秋明). Chin. Phys. B, 2022, 31(2): 024703.
[10] Comparison of formation and evolution of radiation-induced defects in pure Ni and Ni-Co-Fe medium-entropy alloy
Lin Lang(稂林), Huiqiu Deng(邓辉球), Jiayou Tao(陶家友), Tengfei Yang(杨腾飞), Yeping Lin(林也平), and Wangyu Hu(胡望宇). Chin. Phys. B, 2022, 31(12): 126102.
[11] Learning physical states of bulk crystalline materials from atomic trajectories in molecular dynamics simulation
Tian-Shou Liang(梁添寿), Peng-Peng Shi(时朋朋), San-Qing Su(苏三庆), and Zhi Zeng(曾志). Chin. Phys. B, 2022, 31(12): 126402.
[12] Mechanism of microweld formation and breakage during Cu-Cu wire bonding investigated by molecular dynamics simulation
Beikang Gu(顾倍康), Shengnan Shen(申胜男), and Hui Li(李辉). Chin. Phys. B, 2022, 31(1): 016101.
[13] Simulation and experiment of the cooling effect of trapped ion by pulsed laser
Chang-Da-Ren Fang(方长达人), Yao Huang(黄垚), Hua Guan(管桦), Yuan Qian(钱源), and Ke-Lin Gao(高克林). Chin. Phys. B, 2021, 30(7): 073701.
[14] Structure-based simulations complemented by conventional all-atom simulations to provide new insights into the folding dynamics of human telomeric G-quadruplex
Yun-Qiang Bian(边运强), Feng Song(宋峰), Zan-Xia Cao(曹赞霞), Jia-Feng Yu(于家峰), and Ji-Hua Wang(王吉华). Chin. Phys. B, 2021, 30(7): 078702.
[15] Non-monotonic temperature evolution of nonlocal structure-dynamics correlation in CuZr glass-forming liquids
W J Jiang(江文杰) and M Z Li(李茂枝). Chin. Phys. B, 2021, 30(7): 076102.
No Suggested Reading articles found!