Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(1): 014219    DOI: 10.1088/1674-1056/19/1/014219
CLASSICAL AREAS OF PHENOMENOLOGY Prev   Next  

High efficiency and broad bandwidth grating coupler between nanophotonic waveguide and fibre

Zhu Yu(朱宇)a), Xu Xue-Jun(徐学俊)a), Li Zhi-Yong(李智勇) a), Zhou Liang(周亮)a), Han Wei-Hua(韩伟华)b),Fan Zhong-Chao(樊中朝) b),Yu Yu-De(俞育德)a), and Yu Jin-Zhong(余金中)a)
a State Key Laboratory on Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China; b Engineering Research Center for Semiconductor Integrated Technology, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
Abstract  A high efficiency and broad bandwidth grating coupler between a silicon-on-insulator (SOI) nanophotonic waveguide and fibre is designed and fabricated. Coupling efficiencies of 46% and 25% at a wavelength of 1.55 μm are achieved by simulation and experiment, respectively. An optical 3 dB bandwidth of 45 nm from 1530 nm to 1575 nm is also obtained in experiment. Numerical calculation shows that a tolerance to fabrication error of 10 nm in etch depth is achievable. The measurement results indicate that the alignment error of ±2 μm results in less than 1 dB additional coupling loss.
Keywords:  grating coupler      silicon-on-insulator      coupling efficiency      bandwidth  
Received:  06 December 2008      Revised:  04 June 2009      Accepted manuscript online: 
PACS:  42.82.Et (Waveguides, couplers, and arrays)  
  42.79.Dj (Gratings)  
  42.79.Gn (Optical waveguides and couplers)  
  42.81.Bm (Fabrication, cladding, and splicing)  
  42.81.Qb (Fiber waveguides, couplers, and arrays)  
Fund: Project supported in part by the National Natural Science Foundation of China (Grant Nos. 60537010 and 60877036), the National Basic Research Program of China (Grant No. 2006CB302803) and the Knowledge Innovation Program of Institute of Semiconductors, Chinese Academy of Sciences (ISCAS) (Grant No. ISCAS2008T10).

Cite this article: 

Zhu Yu(朱宇), Xu Xue-Jun(徐学俊), Li Zhi-Yong(李智勇), Zhou Liang(周亮), Han Wei-Hua(韩伟华),Fan Zhong-Chao(樊中朝),Yu Yu-De(俞育德), and Yu Jin-Zhong(余金中) High efficiency and broad bandwidth grating coupler between nanophotonic waveguide and fibre 2010 Chin. Phys. B 19 014219

[1] Notomi M, Shinya A, Mitsugi S, Kuramochi E and Ryu H 2004 Opt. Express 12 1551
[2] Preston K, Schmidt B and Lipson M 2007 Opt. Express 15 17283
[3] Xu Q, Manipatruni S, Schmidt B, Shakya J and Lipson M 2007 Opt. Express 15 430
[4] Huang Q Z, Yu J Z, Chen S W, Xu X J, Han W H and Fan Z C 2008 Chin. Phys. B 17 2562
[5] Li J Q, Bananej A, Li Q H, Chen Q and Li C F 2004 Chin. Phys. 13 1046
[6] Bogaerts W, Baets R, Dumon P, Wiaux V, Beckx S, Taillaet D, Luyssaert B, Campenhout J V, Bienstman P and Thourhout D V 2005 J. Lightwave Technol. 23 401
[7] Shoji T, Tsuchiwa T, Watanabe T, Yamada K and H Morita 2002 Electron. Lett. 38 1669
[8] McNab S J, Moll N and Vlasov Y A 2003 Opt. Express 11 2927
[9] Roelkens G, Dumon P, Bogaerts W, Thourhout D V and Baets R 2005 IEEE Photon. Technol. Lett. 17 2613
[10] Taillaert D, Bogaerts W, Bienstman P, Krauss T F, Daele P V, Moerman I, Verstuyft S, Mesel K D and Baets R 2002 J. Quantum Electron. 38 949
[11] Taillaert D, Chong H, Borel P I, Frandsen L H, Rue R M and Baets R 2003 IEEE Photon. Technol. Lett. 15 1249
[12] Taillaert D, Laere F V, Ayre M, Bogaerts W, Bienstman P, Thourhout D V and Baets R 2006 Japan J. Appl. Phys. 145 6071
[13] Dakss M L, Kuhn L, Heidrich P F and Scott B A 1970 Appl. Phys. Lett. 16 523
[14] Taillaert D, Bienstman P and Baets R 2004 Opt. Lett. 29 2749
[15] Roelkens G, Thourhout D and Baets R 2007 Opt. Lett. 32 1495
[1] High-sensitivity methane monitoring based on quasi-fundamental mode matched continuous-wave cavity ring-down spectroscopy
Zhe Li(李哲), Shuang Yang(杨爽), Zhirong Zhang(张志荣), Hua Xia(夏滑), Tao Pang(庞涛),Bian Wu(吴边), Pengshuai Sun(孙鹏帅), Huadong Wang(王华东), and Runqing Yu(余润磬). Chin. Phys. B, 2022, 31(9): 094207.
[2] Bandwidth expansion and pulse shape optimized for 10 PW laser design via spectral shaping
Da-Wei Li(李大为), Tao Wang(王韬), Xiao-Lei Yin(尹晓蕾), Li Wang(王利), Jia-Mei Li(李佳美),Hui Yu(余惠), Yong Cui(崔勇), Tian-Xiong Zhang(张天雄), Xing-Qiang Lu(卢兴强), and Guang Xu(徐光). Chin. Phys. B, 2022, 31(9): 094210.
[3] Switchable down-, up- and dual-chirped microwave waveform generation with improved time-bandwidth product based on polarization modulation and phase encoding
Yuxiao Guo(郭玉箫), Muguang Wang(王目光), Hongqian Mu(牟宏谦), and Guofang Fan(范国芳). Chin. Phys. B, 2022, 31(7): 078403.
[4] Numerical studies of atomic three-step photoionization processes with non-monochromatic laser fields
Xiao-Yong Lu(卢肖勇), Li-De Wang(王立德), and Yun-Fei Li(李云飞). Chin. Phys. B, 2022, 31(6): 063203.
[5] Design of a polarization splitter for an ultra-broadband dual-core photonic crystal fiber
Yongtao Li(李永涛), Jiesong Deng(邓洁松), Zhen Yang(阳圳), Hui Zou(邹辉), and Yuzhou Ma(马玉周). Chin. Phys. B, 2022, 31(5): 054215.
[6] Impact of STI indium implantation on reliability of gate oxide
Xiao-Liang Chen(陈晓亮), Tian Chen(陈天), Wei-Feng Sun(孙伟锋), Zhong-Jian Qian(钱忠健), Yu-Dai Li(李玉岱), and Xing-Cheng Jin(金兴成). Chin. Phys. B, 2022, 31(2): 028505.
[7] Microwave absorption properties regulation and bandwidth formula of oriented Y2Fe17N3-δ@SiO2/PU composite synthesized by reduction-diffusion method
Hao Wang(王浩), Liang Qiao(乔亮), Zu-Ying Zheng(郑祖应), Hong-Bo Hao(郝宏波), Tao Wang(王涛), Zheng Yang(杨正), and Fa-Shen Li(李发伸). Chin. Phys. B, 2022, 31(11): 114206.
[8] An easily-prepared impedance matched Josephson parametric amplifier
Ya-Peng Lu(卢亚鹏), Quan Zuo(左权), Jia-Zheng Pan(潘佳政), Jun-Liang Jiang(江俊良), Xing-Yu Wei(魏兴雨), Zi-Shuo Li(李子硕), Wen-Qu Xu(许问渠), Kai-Xuan Zhang(张凯旋), Ting-Ting Guo(郭婷婷), Shuo Wang(王硕), Chun-Hai Cao(曹春海), Wei-Wei Xu(许伟伟), Guo-Zhu Sun(孙国柱), and Pei-Heng Wu(吴培亨). Chin. Phys. B, 2021, 30(6): 068504.
[9] Polarization-independent silicon photonic grating coupler for large spatial light spots
Lijun Yang(杨丽君), Xiaoyan Hu(胡小燕), Bin Li(李斌), and Jing Cao(曹静). Chin. Phys. B, 2021, 30(2): 024206.
[10] Random-injection-based two-channel chaos with enhanced bandwidth and suppressed time-delay signature by mutually coupled lasers: Proposal and numerical analysis
Shi-Rong Xu(许世蓉), Xin-Hong Jia (贾新鸿), Hui-Liang Ma(马辉亮), Jia-Bing Lin(林佳兵), Wen-Yan Liang(梁文燕), and Yu-Lian Yang(杨玉莲). Chin. Phys. B, 2021, 30(1): 014203.
[11] Quantum noise of a harmonic oscillator under classical feedback control
Feng Tang(汤丰), Nan Zhao(赵楠). Chin. Phys. B, 2020, 29(9): 090303.
[12] Effects of buried oxide layer on working speed of SiGe heterojunction photo-transistor
Xian-Cheng Liu(刘先程), Jia-Jun Ma(马佳俊), Hong-Yun Xie(谢红云), Pei Ma(马佩), Liang Chen(陈亮), Min Guo(郭敏), Wan-Rong Zhang(张万荣). Chin. Phys. B, 2020, 29(2): 028501.
[13] High-gain and low-distortion Brillouin amplification based on pump multi-frequency intensity modulation
Li-Wen Sheng(盛立文), De-Xin Ba(巴德欣), Zhi-Wei Lv(吕志伟). Chin. Phys. B, 2019, 28(2): 024212.
[14] Compact and high-efficient wavelength demultiplexing coupler based on high-index dielectric nanoantennas
Jingfeng Tan(谭敬丰), Hua Pang(庞画), Fengkai Meng(孟凤凯), Jin Jiang(蒋进). Chin. Phys. B, 2018, 27(9): 094217.
[15] Coupled resonator-induced transparency on a three-ring resonator
Xinquan Jiao(焦新泉), Haobo Yu(于皓博), Miao Yu(于淼), Chenyang Xue(薛晨阳), Yongfeng Ren(任勇峰). Chin. Phys. B, 2018, 27(7): 074212.
No Suggested Reading articles found!