Please wait a minute...
Chin. Phys. B, 2008, Vol. 17(6): 2156-2159    DOI: 10.1088/1674-1056/17/6/036
CLASSICAL AREAS OF PHENOMENOLOGY Prev   Next  

Laser-induced pattern formation from homogeneous polyisoprene solutions

Lin Dian-Yang(林殿阳)a), Li Ming(黎明)a)b), Wang Shu-Jie(王淑杰)c), and Lü Zhi-Wei(吕志伟)a)
a Institute of Opto-Electronics, Harbin Institute of Technology, Harbin 150001, China; b College of Science, Inner Mongolia University of Technology, Hohhot 010062, China; c School of Management, Harbin Institute of Technology, Harbin 150001, China
Abstract  This paper reports that the pattern formation in homogeneous solutions of polyisoprene in toluene saturated with C$_{60}$ induced by a continuous-wave visible laser is observed experimentally. The transmitted beam patterns change with the increase of the laser irradiation time. In the initial phase, the patterns with concentric ring-shaped structure are formed. In the end, the patterns become speckle-shaped. The incubation time of the transmitted beam widening is inversely proportional to the laser power density and solution concentration. The pattern formation results from the optical-field-induced refractive index changes in the solutions, but the mechanism of optical-field-induced refractive index changes in the polymer solutions needs to be further studied.
Keywords:  laser-induced      pattern formation      polyisoprene  
Received:  16 October 2007      Revised:  15 November 2007      Accepted manuscript online: 
PACS:  42.65.Sf (Dynamics of nonlinear optical systems; optical instabilities, optical chaos and complexity, and optical spatio-temporal dynamics)  
  42.60.Jf (Beam characteristics: profile, intensity, and power; spatial pattern formation)  
  42.70.Jk (Polymers and organics)  
Fund: Project supported by the Multidiscipline Scientific Research Foundation of Harbin Institute of Technology (Grand No HIT. MD. 2003. 08) and the Program of Excellence Team in Harbin Institute of Technology.

Cite this article: 

Lin Dian-Yang(林殿阳), Li Ming(黎明), Wang Shu-Jie(王淑杰), and Lü Zhi-Wei(吕志伟) Laser-induced pattern formation from homogeneous polyisoprene solutions 2008 Chin. Phys. B 17 2156

[1] Combination of spark discharge and nanoparticle-enhanced laser-induced plasma spectroscopy
Qing-Xue Li(李庆雪), Dan Zhang(张丹), Yuan-Fei Jiang(姜远飞), Su-Yu Li(李苏宇), An-Min Chen(陈安民), and Ming-Xing Jin(金明星). Chin. Phys. B, 2022, 31(8): 085201.
[2] Laser-induced fluorescence experimental spectroscopy and theoretical calculations of uranium monoxide
Xi-Lin Bai(白西林), Xue-Dong Zhang(张雪东), Fu-Qiang Zhang(张富强), and Timothy C Steimle. Chin. Phys. B, 2022, 31(5): 053301.
[3] Generation of laser-driven flyer dominated by shock-induced shear bands: A molecular dynamics simulation study
Deshen Geng(耿德珅), Danyang Liu(刘丹阳), Jianying Lu(鲁建英), Chao Chen(陈超), Junying Wu(伍俊英), Shuzhou Li(李述周), and Lang Chen(陈朗). Chin. Phys. B, 2022, 31(2): 024101.
[4] Effects of pulse energy ratios on plasma characteristics of dual-pulse fiber-optic laser-induced breakdown spectroscopy
Yu-Hua Hang(杭玉桦), Yan Qiu(邱岩), Ying Zhou(周颖), Tao Liu(刘韬), Bin Zhu(朱斌), Kaixing Liao(廖开星), Ming-Xin Shi(时铭鑫), and Fei Xue(薛飞). Chin. Phys. B, 2022, 31(2): 024212.
[5] Femtosecond laser-induced Cu plasma spectra at different laser polarizations and sample temperatures
Yitong Liu(刘奕彤), Qiuyun Wang(王秋云), Luyun Jiang(蒋陆昀), Anmin Chen(陈安民), Jianhui Han(韩建慧), and Mingxing Jin(金明星). Chin. Phys. B, 2022, 31(10): 105201.
[6] Micro-pinch formation and extreme ultraviolet emission of laser-induced discharge plasma
Jun-Wu Wang(王均武), Xin-Bing Wang(王新兵), Du-Luo Zuo(左都罗), and Vassily S. Zakharov. Chin. Phys. B, 2021, 30(9): 095207.
[7] Phase-field study of spinodal decomposition under effect of grain boundary
Ying-Yuan Deng(邓英远), Can Guo(郭灿), Jin-Cheng Wang(王锦程), Qian Liu(刘倩), Yu-Ping Zhao(赵玉平), and Qing Yang(杨卿). Chin. Phys. B, 2021, 30(8): 088101.
[8] Applying a global pulse disturbance to eliminate spiral waves in models of cardiac muscle
Jian Gao(高见), Changgui Gu(顾长贵), and Huijie Yang(杨会杰). Chin. Phys. B, 2021, 30(7): 070501.
[9] Effects of temperature and pressure on OH laser-induced fluorescence exciting A-X (1,0) transition at high pressures
Xiaobo Tu(涂晓波), Linsen Wang(王林森), Xinhua Qi(齐新华), Bo Yan(闫博), Jinhe Mu(母金河), Shuang Chen(陈爽). Chin. Phys. B, 2020, 29(9): 093301.
[10] Time-dependent photothermal characterization on damage of fused silica induced by pulsed 355-nm laser with high repetition rate
Chun-Yan Yan(闫春燕), Bao-An Liu(刘宝安), Xiang-Cao Li(李香草), Chang Liu(刘畅), Xin Ju(巨新). Chin. Phys. B, 2020, 29(2): 027901.
[11] Absorption, quenching, and enhancement by tracer in acetone/toluene laser-induced fluorescence
Guang Chang(常光), Xin Yu(于欣), Jiangbo Peng(彭江波), Yang Yu(于杨), Zhen Cao(曹振), Long Gao(高龙), Minghong Han(韩明宏), and Guohua Wu(武国华). Chin. Phys. B, 2020, 29(12): 124212.
[12] Zone plate design for generating annular-focused beams
Yong Chen(陈勇), Lai Wei(魏来), Qiang-Qiang Zhang(张强强), Quan-Ping Fan(范全平), Zu-Hua Yang(杨祖华), and Lei-Feng Cao(曹磊峰)†. Chin. Phys. B, 2020, 29(10): 104202.
[13] Damage characteristics of laser plasma shock wave on rear surface of fused silica glass
Xiong Shen(沈雄), Guo-Ying Feng(冯国英), Sheng Jing(景晟), Jing-Hua Han(韩敬华), Ya-Guo Li(李亚国), Kai Liu(刘锴). Chin. Phys. B, 2019, 28(8): 085202.
[14] Laser-induced damage threshold in HfO2/SiO2 multilayer films irradiated by β-ray
Mei-Hua Fang(方美华), Peng-Yu Tian(田鹏宇), Mao-Dong Zhu(朱茂东), Hong-Ji Qi(齐红基), Tao Fei(费涛), Jin-Peng Lv(吕金鹏), Hui-Ping Liu(刘会平). Chin. Phys. B, 2019, 28(2): 024215.
[15] Quantitative rescattering theory for nonsequential double ionization
Zhangjin Chen(陈长进), Fang Liu(刘芳), Hua Wen(文华). Chin. Phys. B, 2019, 28(12): 123401.
No Suggested Reading articles found!