Please wait a minute...
Chinese Physics, 2007, Vol. 16(7): 2044-2050    DOI: 10.1088/1009-1963/16/7/040
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES Prev   Next  

RF electric field penetration and power deposition into nonequilibrium planar-type inductively coupled plasmas

Mao Ming(毛明), Wang Shuai(王帅), Dai Zhong-Ling(戴忠玲), and Wang You-Nian(王友年)
The State Key Laboratory of Materials Modification, Department of Physics, Dalian University of Technology, Dalian 116024, China
Abstract  The RF electric field penetration and the power deposition into planar-type inductively coupled plasmas in low-pressure discharges have been studied by means of a self-consistent model which consists of Maxwell equations combined with the kinetic equation of electrons. The Maxwell equations are solved based on the expansion of the Fourier--Bessel series for determining the RF electric field. Numerical results show the influence of a non-Maxwellian electron energy distribution on the RF electric field penetration and the power deposition for different coil currents. Moreover, the two-dimensional spatial profiles of RF electric field and power density are also shown for different numbers of RF coil turns.
Keywords:  inductively coupled plasma      RF field penetration      kinetic theory  
Received:  13 September 2006      Revised:  23 January 2007      Accepted manuscript online: 
PACS:  52.50.Dg (Plasma sources)  
  52.25.Dg (Plasma kinetic equations)  
  52.65.-y (Plasma simulation)  
  52.80.Yr (Discharges for spectral sources)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos 10376003 and 10572035).

Cite this article: 

Mao Ming(毛明), Wang Shuai(王帅), Dai Zhong-Ling(戴忠玲), and Wang You-Nian(王友年) RF electric field penetration and power deposition into nonequilibrium planar-type inductively coupled plasmas 2007 Chinese Physics 16 2044

[1] Numerical investigation of radio-frequency negative hydrogen ion sources by a three-dimensional fluid model
Ying-Jie Wang(王英杰), Jia-Wei Huang(黄佳伟), Quan-Zhi Zhang(张权治), Yu-Ru Zhang(张钰如), Fei Gao(高飞), and You-Nian Wang(王友年). Chin. Phys. B, 2021, 30(9): 095205.
[2] Effect of the particle temperature on lift force of nanoparticle in a shear rarefied flow
Jun-Jie Su(苏俊杰), Jun Wang(王军), and Guo-Dong Xia(夏国栋). Chin. Phys. B, 2021, 30(7): 075101.
[3] Time-resolved radial uniformity of pulse-modulated inductively coupled O2/Ar plasmas
Wei Liu(刘巍), Chan Xue(薛婵), Fei Gao(高飞), Yong-Xin Liu(刘永新), You-Nian Wang(王友年), and Yong-Tao Zhao(赵永涛). Chin. Phys. B, 2021, 30(6): 065202.
[4] Numerical simulation and experimental validation of multiphysics field coupling mechanisms for a high power ICP wind tunnel
Ming-Hao Yu(喻明浩), Zhe Wang(王哲), Ze-Yang Qiu(邱泽洋), Bo Lv(吕博), and Bo-Rui Zheng(郑博睿). Chin. Phys. B, 2021, 30(6): 065201.
[5] Quasi-delta negative ions density of Ar/O2 inductively coupled plasma at very low electronegativity
Shu-Xia Zhao(赵书霞). Chin. Phys. B, 2021, 30(5): 055201.
[6] Effect of hydrogen content on dielectric strength of the silicon nitride film deposited by ICP-CVD
Yudong Zhang(张玉栋), Jiale Tang(唐家乐), Yongjie Hu(胡永杰), Jie Yuan(袁杰), Lulu Guan(管路路), Xingyu Li(李星雨), Hushan Cui(崔虎山), Guanghui Ding(丁光辉), Xinying Shi(石新颖), Kaidong Xu(许开东), and Shiwei Zhuang(庄仕伟). Chin. Phys. B, 2021, 30(4): 048103.
[7] Spatio-temporal measurements of overshoot phenomenon in pulsed inductively coupled discharge
Xiang-Yun Lv(吕翔云), Fei Gao(高飞), Quan-Zhi Zhang(张权治), and You-Nian Wang(王友年). Chin. Phys. B, 2021, 30(4): 045202.
[8] Measurement of electronegativity during the E to H mode transition in a radio frequency inductively coupled Ar/O2 plasma
Peng-Cheng Du(杜鹏程), Fei Gao(高飞, Xiao-Kun Wang(王晓坤), Yong-Xin Liu(刘永新), and You-Nian Wang(王友年). Chin. Phys. B, 2021, 30(3): 035202.
[9] Phase shift effects of radio-frequency bias on ion energy distribution in continuous wave and pulse modulated inductively coupled plasmas
Chan Xue(薛婵), Fei Gao(高飞), Yong-Xin Liu(刘永新), Jia Liu(刘佳), You-Nian Wang(王友年). Chin. Phys. B, 2018, 27(4): 045202.
[10] Gas flow characteristics of argon inductively coupled plasma and advections of plasma species under incompressible and compressible flows
Shu-Xia Zhao(赵书霞), Zhao Feng(丰曌). Chin. Phys. B, 2018, 27(12): 124701.
[11] Influence of a centered dielectric tube on inductively coupled plasma source: Chamber structures and plasma characteristics
Zhen-Hua Bi(毕振华), Yi Hong(洪义), Guang-Jiu Lei(雷光玖), Shuai Wang(王帅), You-Nian Wang(王友年), Dong-Ping Liu(刘东平). Chin. Phys. B, 2017, 26(7): 075203.
[12] Plasma-assisted surface treatment for low-temperature annealed ohmic contact on AlGaN/GaN heterostructure field-effect transistors
Lei Wang(王磊), Jiaqi Zhang(张家琦), Liuan Li(李柳暗), Yutaro Maeda(前田裕太郎), Jin-Ping Ao(敖金平). Chin. Phys. B, 2017, 26(3): 037201.
[13] Evaluation of a gate-first process for AlGaN/GaN metal-oxide-semiconductor heterostructure field-effect transistors with low ohmic annealing temperature
Liuan Li(李柳暗), Jiaqi Zhang(张家琦), Yang Liu(刘扬), Jin-Ping Ao(敖金平). Chin. Phys. B, 2016, 25(3): 038503.
[14] Discontinuity of mode transition and hysteresis in hydrogen inductively coupled plasma via a fluid model
Xu Hui-Jing (徐会静), Zhao Shu-Xia (赵书霞), Gao Fei (高飞), Zhang Yu-Ru (张钰如), Li Xue-Chun (李雪春), Wang You-Nian (王友年). Chin. Phys. B, 2015, 24(11): 115201.
[15] Electronic dynamic behavior in inductively coupled plasmas with radio-frequency bias
Gao Fei (高飞), Zhang Yu-Ru (张钰如), Zhao Shu-Xia (赵书霞), Li Xue-Chun (李雪春), Wang You-Nian (王友年). Chin. Phys. B, 2014, 23(11): 115202.
No Suggested Reading articles found!