Please wait a minute...
Chinese Physics, 2006, Vol. 15(1): 213-218    DOI: 10.1088/1009-1963/15/1/035
CROSS DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Effect of substrate temperature on the growth and properties of boron-doped microcrystalline silicon films

Lei Qing-Song (雷青松)a, Wu Zhi-Meng (吴志猛)a, Geng Xin-Hua (耿新华)b, Zhao Ying (赵颖)b, Sun Jian (孙健)b, Xi Jian-Ping (奚建平)a
a Institute of Micro and Nano Science and Technology, Shanghai Jiaotong University, Shanghai 200030, China; b Institute of Photo-Electronics, Nankai University, Tianjin 300071, China
Abstract  Highly conductive boron-doped hydrogenated microcrystalline silicon ($\mu$ c-Si:H) films are prepared by very high frequency plasma enhanced chemical vapour deposition (VHF PECVD) at the substrate temperatures $T_{\rm S})$ ranging from 90$^\circ$C to 270$^\circ$C. The effects of $T_{\rm S}$ on the growth and properties of the films are investigated. Results indicate that the growth rate, the electrical (dark conductivity, carrier concentration and Hall mobility) and structural (crystallinity and grain size) properties are all strongly dependent on $T_{\rm S}$. As $T_{\rm S}$ increases, it is observed that 1) the growth rate initially increases and then arrives at a maximum value of 13.3 nm/min at $T_{\rm S}$=210$^\circ$C, 2) the crystalline volume fraction ($X_{\rm c})$ and the grain size increase initially, then reach their maximum values at $T_{\rm S}$=140$^\circ$C, and finally decrease, 3) the dark conductivity ($\sigma _{\rm d})$, carrier concentration and Hall mobility have a similar dependence on $T_{\rm S}$ and arrive at their maximum values at $T_{\rm S}$=190$^\circ$C. In addition, it is also observed that at a lower substrate temperature $T_{\rm S}$, a higher dopant concentration is required in order to obtain a maximum $\sigma _{\rm d}$.
Keywords:  boron-doped $\mu$c-Si:H films      VHF PECVD      crystallinity      carrier concentration      Hall mobility  
Received:  16 May 2005      Revised:  22 September 2005      Accepted manuscript online: 
PACS:  68.55.A- (Nucleation and growth)  
  68.55.-a (Thin film structure and morphology)  
  81.15.Gh (Chemical vapor deposition (including plasma-enhanced CVD, MOCVD, ALD, etc.))  
  73.61.Cw (Elemental semiconductors)  
  73.50.Pz (Photoconduction and photovoltaic effects)  
  73.50.Jt (Galvanomagnetic and other magnetotransport effects)  
Fund: Project supported by the State Key Program of Basic Research of China (Grant Nos G2000028202 and G2000028203).

Cite this article: 

Lei Qing-Song (雷青松), Wu Zhi-Meng (吴志猛), Geng Xin-Hua (耿新华), Zhao Ying (赵颖), Sun Jian (孙健), Xi Jian-Ping (奚建平) Effect of substrate temperature on the growth and properties of boron-doped microcrystalline silicon films 2006 Chinese Physics 15 213

[1] Advancing thermoelectrics by suppressing deep-level defects in Pb-doped AgCrSe2 alloys
Yadong Wang(王亚东), Fujie Zhang(张富界), Xuri Rao(饶旭日), Haoran Feng(冯皓然),Liwei Lin(林黎蔚), Ding Ren(任丁), Bo Liu(刘波), and Ran Ang(昂然). Chin. Phys. B, 2023, 32(4): 047202.
[2] Quantitative measurement of the charge carrier concentration using dielectric force microscopy
Junqi Lai(赖君奇), Bowen Chen(陈博文), Zhiwei Xing(邢志伟), Xuefei Li(李雪飞), Shulong Lu(陆书龙), Qi Chen(陈琪), and Liwei Chen(陈立桅). Chin. Phys. B, 2023, 32(3): 037202.
[3] Surface structure modification of ReSe2 nanosheets via carbon ion irradiation
Mei Qiao(乔梅), Tie-Jun Wang(王铁军), Yong Liu(刘泳), Tao Liu(刘涛), Shan Liu(刘珊), and Shi-Cai Xu(许士才). Chin. Phys. B, 2023, 32(2): 026101.
[4] Thermodynamic criterion for searching high mobility two-dimensional electron gas at KTaO3 interface
Wen-Xiao Shi(时文潇), Hui Zhang(张慧), Shao-Jin Qi(齐少锦), Jin-E Zhang(张金娥), Hai-Lin Huang(黄海林), Bao-Gen Shen(沈保根), Yuan-Sha Chen(陈沅沙), and Ji-Rong Sun(孙继荣). Chin. Phys. B, 2021, 30(7): 077302.
[5] Enhanced thermoelectric performance in p-type Mg3Sb2 via lithium doping
Hao Wang(王浩), Jin Chen(陈进), Tianqi Lu(陆天奇), Kunjie Zhu(朱坤杰), Shan Li(李珊), Jun Liu(刘军), Huaizhou Zhao(赵怀周). Chin. Phys. B, 2018, 27(4): 047212.
[6] Effects of rapid thermal annealing on crystallinity and Sn surface segregation of Ge1-xSnx films on Si (100) and Si (111)
Yuan-Hao Miao(苗渊浩), Hui-Yong Hu(胡辉勇), Jian-Jun Song(宋建军), Rong-Xi Xuan(宣荣喜), He-Ming Zhang(张鹤鸣). Chin. Phys. B, 2017, 26(12): 127306.
[7] Femtosecond laser induced nanostructuring of zirconium in liquid confined environment
Nisar Ali, Shazia Bashir, Umm-i-Kalsoom, M. Shahid Rafique, Narjis Begum, Wolfgang Husinsky, Ali Ajami, Chandra S. R. Natahala. Chin. Phys. B, 2017, 26(1): 015204.
[8] Low-resistance Ohmic contact on polarization-dopedAlGaN/GaN heterojunction
Li Shi-Bin (李世彬), Yu Hong-Ping (余宏萍), Zhang Ting (张婷), Chen Zhi (陈志), Wu Zhi-Ming (吴志明). Chin. Phys. B, 2014, 23(10): 107101.
[9] Effect of surface morphology on the electron mobility of epitaxial graphene grown on 0° and 8° Si-terminated 4H-SiC substrates
Li Jia (李佳), Wang Li (王丽), Feng Zhi-Hong (冯志红), Yu Cui (蔚翠), Liu Qing-Bin (刘庆彬), Dun Shao-Bo (敦少博), Cai Shu-Jun (蔡树军). Chin. Phys. B, 2012, 21(9): 097304.
[10] Improving performance of polymer solar cell by adjusting crystallinity and nanoscale phase separation
Chen Wei-Bing(陈卫兵), Xu Zong-Xiang(许宗祥), Li Kai(李凯), Chui Stephen Sin-Yin(徐先贤), Roy V.~A.~L., Lai Pui-To(黎沛涛), and Che Chi-Ming(支志明) . Chin. Phys. B, 2012, 21(7): 078401.
[11] Modulation of electrical and optical properties of gallium-doped ZnO films by radio frequency magnetron sputtering
Liang Shuang(梁爽), Mei Zeng-Xia(梅增霞), and Du Xiao-Long(杜小龙) . Chin. Phys. B, 2012, 21(6): 067306.
[12] Different temperature dependence of carrier transport properties between AlxGa1-xN/InyGa1-yN/GaN and AlxGa1-xN/GaN heterostructures
Song Jie (宋杰), Xu Fu-Jun (许福军), Huang Cheng-Cheng (黄呈橙), Lin Fang (林芳), Wang Xin-Qiang (王新强), Yang Zhi-Jian (杨志坚), Shen Bo (沈波). Chin. Phys. B, 2011, 20(5): 057305.
[13] The effect of initial discharge conditions on the properties of microcrystalline silicon thin films and solar cells
Chen Yong-Sheng(陈永生), Yang Shi-E(杨仕娥), Wang Jian-Hua(汪建华), Lu Jing-Xiao(卢景霄),Gao Xiao-Yong(郜小勇), and Gu Jin-Hua(谷锦华). Chin. Phys. B, 2010, 19(5): 057205.
[14] Distribution of carriers in gradient-doping transmission-mode GaAs photocathodes grown by molecular beam epitaxy
Zhang Yi-Jun(张益军), Chang Ben-Kang(常本康), Yang Zhi(杨智), Niu Jun(牛军), and Zou Ji-Jun(邹继军). Chin. Phys. B, 2009, 18(10): 4541-4546.
[15] The high deposition of microcrystalline silicon thin film by very high frequency plasma enhanced chemical vapour deposition and the fabrication of solar cells
Chen Yong-Sheng(陈永生), Wang Jian-Hua(汪建华), Lu Jing-Xiao(卢景霄), Zheng Wen(郑文), Gu Jin-Hua(谷锦华), Yang Shi-E(杨仕娥), Gao Xiao-Yong(郜小勇), Guo Xue-Jun(郭学军), Zhao Shang-Li(赵尚丽), and Gao Zhe(高哲). Chin. Phys. B, 2008, 17(9): 3464-3470.
No Suggested Reading articles found!