INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Prev
Next
|
|
|
Improving performance of polymer solar cell by adjusting crystallinity and nanoscale phase separation |
Chen Wei-Bing(陈卫兵)a)b)†, Xu Zong-Xiang(许宗祥)c), Li Kai(李凯)b), Chui Stephen Sin-Yin(徐先贤)b), Roy V.~A.~L.c), Lai Pui-To(黎沛涛)d), and Che Chi-Ming(支志明)b) |
a School of Computer and Communication, Hunan University of Technology, Zhuzhou 412007, China; b Department of Chemistry, Institute of Molecular Functional Materials and HKU-CAS Joint Laboratory on New Materials, The University of Hong Kong, Pokfulam Road, Hongkong SAR, China; c Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR, China; d Department of Electrical & Electronic Engineering, The University of Hong Kong, Pokfulam Road, Hongkong SAR, China |
|
|
Abstract In this paper, we report a high-performance P3HT/PCBM bulk-heterojunction solar cell with a power conversion efficiency of 4.85% fabricated by adjusting polymer crystallinity and nanoscale phase separation using an ultrasonic irradiation mixing approach of the polymer. The results of grazing incidence X-ray diffraction, UV/Vis spectroscopic, and atomic force microscopic measurements of the P3HT/PCBM blend films reveal that the P3HT/PCBM film fabricated by ultrasonic irradiation mixing P3HT and PCBM solutions for 10 min has higher degree of crystallinity, higher absorption efficiency, and better phase separation, which altogether account for the higher charge transport properties and photovoltaic cell performance.
|
Received: 01 October 2011
Revised: 18 January 2012
Accepted manuscript online:
|
PACS:
|
84.60.Jt
|
(Photoelectric conversion)
|
|
73.50.-h
|
(Electronic transport phenomena in thin films)
|
|
72.20.Jv
|
(Charge carriers: generation, recombination, lifetime, and trapping)
|
|
64.75.St
|
(Phase separation and segregation in thin films)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 60871007). |
Corresponding Authors:
Chen Wei-Bing
E-mail: wbchen2006@gmail.com
|
Cite this article:
Chen Wei-Bing(陈卫兵), Xu Zong-Xiang(许宗祥), Li Kai(李凯), Chui Stephen Sin-Yin(徐先贤), Roy V.~A.~L., Lai Pui-To(黎沛涛), and Che Chi-Ming(支志明) Improving performance of polymer solar cell by adjusting crystallinity and nanoscale phase separation 2012 Chin. Phys. B 21 078401
|
[1] |
Hoppe H and Sariciftci N S 2004 J. Mater. Res. 19 1924
|
[2] |
Coakley K M and McGehee M D 2004 Chem. Mater. 16 4533
|
[3] |
Dennler G, Scharber M C and Brabec C J 2009 Adv. Mater. 21 1323
|
[4] |
Sariciftci N S, Smilowitz L, Heeger A J and Wudl F 1992 Science 258 1474
|
[5] |
Yu G, Gao J, Hummelen J C, Wudl F and Heeger A J 1995 Science 270 1789
|
[6] |
Kim J Y, Lee K, Coates N E, Moses D, Nguyen T Q, Dante M and Heeger A J 2007 Science 317 222
|
[7] |
Liang Y Y, Xu Z, Xia J B, Tsai S T, Wu Y, Li G, Ray C and Yu L P 2010 Adv. Mater. 22 E135
|
[8] |
Chen H Y, Hou J H, Zhang S Q, Liang Y Y, Yang G W, Yang Y, Yu L P, Wu Y and Li G 2009 Nature Photon. 3 649
|
[9] |
Wang N N, Yu J S, Zang Y and Jiang Y D 2010 Chin. Phys. B 19 038602
|
[10] |
Chen W B, Yang W F, Zou H J, Tang J X, Deng L F and Lai P T 2011 Acta Phys. Sin. 60 117107 (in Chinese)
|
[11] |
Yu H Z and Wen Y X 2011 Acta Phys. Sin. 60 038401 (in Chinese)
|
[12] |
Kim Y, Cook S, Tuladhar S M, Choulis S A, Nelson J, Durrant J R, Bradley D D C, Giles M, Mcculloch I, Ha C S and Ree M 2006 Nature Mater. 5 197
|
[13] |
Li L G, Lu G H and Yang X N 2008 J. Mater. Chem. 18 1984
|
[14] |
Padinger F, Rittberger R S and Scariciftci N S 2003 Adv. Funct. Mater. 13 85
|
[15] |
Zhao Y, Xie Z Y, Qu Y, Geng Y H and Wang L X 2007 Appl. Phys. Lett. 90 043504
|
[16] |
Peet J, Kim J Y, Coates N E, Ma W L, Moses D, Heeger A J and Bazan G C 2007 Nature Mater. 6 497
|
[17] |
Neugebauer H, Brabec C J, Hummelen J C and Sariciftci N S 2000 Sol. Energy Mater. Sol. Cells. 61 35
|
[18] |
Peet J, Soci C, Coffin R C, Nguyen T Q, Mikhailovsky A, Moses D and Bazan G C 2006 Appl. Phys. Lett. 89 252105
|
[19] |
Kim B G, Kim M S and Kim J S 2010 Acsnano 4 2160
|
[20] |
Aiyar A R, Hong J I, Nambiar R, Collard D M and Reichmanis E 2011 Adv. Funct. Mater. 21 2652
|
[21] |
Mihailetchi V D, Wildeman J and Blom P W M 2005 Phys. Rev. Lett. 94 126602
|
[22] |
Li G, Shrotriya V, Huang J S, Yao Y, Moriarty T, Emery K and Yang Y 2005 Nature Mater. 4 864
|
[23] |
Xu Z X, Xiang H F, Roy V A L, Chui S S Y, Wang Y, Lai P T and Che C M 2009 Appl. Phys. Lett. 95 123305
|
[24] |
Brown P J, Thomas D S, Köhler A, Wilson J S, Kim J S, Ramsdale C M, Sirringhaus H and Friend R H 2003 Phys. Rev. B 67 064203
|
[25] |
Campoy-Quiles M, Ferenczi T, Agostinelli T, Etchegoin P G, Kim Y, Anthopoulos T D, Stavrinou P N, Bradley D D C and Nelson J 2008 Nature Mater. 7 158
|
[26] |
Wang W L, Wu H B, Yang C Y, Luo C, Zhang Y, Chen J W and Cao Y 2007 Appl. Phys. Lett. 90 183512
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|