Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(12): 127306    DOI: 10.1088/1674-1056/26/12/127306
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Effects of rapid thermal annealing on crystallinity and Sn surface segregation of Ge1-xSnx films on Si (100) and Si (111)

Yuan-Hao Miao(苗渊浩), Hui-Yong Hu(胡辉勇), Jian-Jun Song(宋建军), Rong-Xi Xuan(宣荣喜), He-Ming Zhang(张鹤鸣)
Key Laboratory of Wide Band-Gap Semiconductor Materials and Devices, East Main Building, School of Microelectronics, Xidian University, Xi'an 710071, China
Abstract  Germanium-tin films with rather high Sn content (28.04% and 29.61%) are deposited directly on Si (100) and Si (111) substrates by magnetron sputtering. The mechanism of the effect of rapid thermal annealing on the Sn surface segregation of Ge1-xSnx films is investigated by x-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM). The x-ray diffraction (XRD) is also performed to determine the crystallinities of the Ge1-xSnx films. The experimental results indicate that root mean square (RMS) values of the annealed samples are comparatively small and have no noticeable changes for the as-grown sample when annealing temperature is below 400℃. The diameter of the Sn three-dimensional (3D) island becomes larger than that of an as-grown sample when the annealing temperature is 700℃. In addition, the Sn surface composition decreases when annealing temperature ranges from 400℃ to 700℃. However, Sn bulk compositions in samples A and B are kept almost unchanged when the annealing temperature is below 600℃. The present investigation demonstrates that the crystallinity of Ge1-xSnx/Si (111) has no obvious advantage over that of Ge1-xSnx/Si (100) and the selection of Si (111) substrate is an effective method to improve the surface morphologies of Ge1-xSnx films. We also find that more severe Sn surface segregation occurs in the Ge1-xSnx/Si (111) sample during annealing than in the Ge1-xSnx/Si (100) sample.
Keywords:  Ge1-xSnx films      crystallinity      Sn surface segregation      Sn surface composition  
Received:  20 April 2017      Revised:  05 September 2017      Accepted manuscript online: 
PACS:  73.61.At (Metal and metallic alloys)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61474085 and 61704130), the Science Research Plan in Shaanxi Province, China (Grant No. 2016GY-085), the Opening Project of Key Laboratory of Microelectronic Devices & Integrated Technology,Institute of Microelectronics,Chinese Academy of Sciences (Grant No. 90109162905), and the Fundamental Research Funds for the Central Universities, China (Grant No. 61704130).
Corresponding Authors:  Yuan-Hao Miao, Yuan-Hao Miao     E-mail:  15336118340@163.com;huhy@xidian.edu.cn

Cite this article: 

Yuan-Hao Miao(苗渊浩), Hui-Yong Hu(胡辉勇), Jian-Jun Song(宋建军), Rong-Xi Xuan(宣荣喜), He-Ming Zhang(张鹤鸣) Effects of rapid thermal annealing on crystallinity and Sn surface segregation of Ge1-xSnx films on Si (100) and Si (111) 2017 Chin. Phys. B 26 127306

[1] Wirths S and Geiger R 2015 Nat. Photon. 9 88
[2] Dutt B and Lin H 2013 IEEE J. Sel. Topi. Quantum Electron. 19 1502706
[3] Homewood K P and Lourenço M A 2015 Nat. Photon. 9 78
[4] Ghetmiri S A and Du W 2014 Appl. Phys. Lett. 105 151109
[5] Du W and Ghetmiri S A 2014 Appl. Phys. Lett. 105 051104
[6] Gong X and Han G 2013 IEEE Electron Dev. Lett. 34 339
[7] Liu Y and Yan J 2014 IEEE Trans. Electron Dev. 61 3639
[8] Schulte-Braucks C and Vond D N 2016 ACS Appl. Mater. Interfaces 8 13133
[9] Hart J and Adam T 2016 J. Appl. Phys. 119 093105
[10] Liu M S 2014 IEEE Symposium on VLSI Technology p. 100
[11] Han G Q 2011 Technical Digest-International Electron Devices Meeting, IEDM, 16.7.1
[12] Wang H 2016 IEEE Trans. Electron Dev. 63 303
[13] Liu M 2015 IEEE Trans. Electron Dev. 62 1262
[14] Senaratne C L and Gallagher J D 2014 J. Appl. Phys. 116 133509
[15] Zelazna K and Polak M P 2015 Appl. Phys. Lett. 106 142102
[16] Wang W and Vajandar S 2016 J. Appl. Phys. 119 155704
[17] MeeYi Ryu and Harris T R 2013 Appl. Phys. Lett. 102 171908
[18] Zhang D and Jin L 2016 J. Alloys Compd. 665 131
[19] Sadoh, Taizoh, Ooato, Akira, Park and Jong Hyeok 2015 Thin Solid Films 602 20
[20] Tran T T, Pastor D and Gandhi H H 2016 J. Appl. Phys. 119 78
[21] Huang Z M, Huang W Q and Liu S R 2016 Sci. Rep. 6 24802
[22] Tsukamoto T, Hirose N and Kasamatsu A 2015 J. Mater. Sci. 50 4366
[23] Zheng J, Wang S and Liu Z 2016 Appl. Phys. Lett. 108 4532
[24] Tsukamoto T, Hirose N and Kasamatsu A 2015 Appl. Phys. Lett. 106 133506
[25] Taoka N, Capellini G and Nils V D D 2016 Appl. Phys. Express 9 0312
[26] Wang W 2014 Appl. Surf. Sci. 321 240
[27] Wang W 2016 J. Phys. D:Appl. Phys. 49 225102
[28] Li H 2014 Appl. Phys. Lett. 105 151906
[29] Lin H and Chen R 2011 Appl. Phys. Lett. 98 261917
[30] Zhang L 2016 J. Non-Cryst. Solids 448 74
[31] Lin J Q 2013 ECS J. Solid State Sci. Tech. 2 P138
[32] Wang W 2015 Appl. Phys. Lett. 106 232106
[1] Surface structure modification of ReSe2 nanosheets via carbon ion irradiation
Mei Qiao(乔梅), Tie-Jun Wang(王铁军), Yong Liu(刘泳), Tao Liu(刘涛), Shan Liu(刘珊), and Shi-Cai Xu(许士才). Chin. Phys. B, 2023, 32(2): 026101.
[2] Femtosecond laser induced nanostructuring of zirconium in liquid confined environment
Nisar Ali, Shazia Bashir, Umm-i-Kalsoom, M. Shahid Rafique, Narjis Begum, Wolfgang Husinsky, Ali Ajami, Chandra S. R. Natahala. Chin. Phys. B, 2017, 26(1): 015204.
[3] Improving performance of polymer solar cell by adjusting crystallinity and nanoscale phase separation
Chen Wei-Bing(陈卫兵), Xu Zong-Xiang(许宗祥), Li Kai(李凯), Chui Stephen Sin-Yin(徐先贤), Roy V.~A.~L., Lai Pui-To(黎沛涛), and Che Chi-Ming(支志明) . Chin. Phys. B, 2012, 21(7): 078401.
[4] The effect of initial discharge conditions on the properties of microcrystalline silicon thin films and solar cells
Chen Yong-Sheng(陈永生), Yang Shi-E(杨仕娥), Wang Jian-Hua(汪建华), Lu Jing-Xiao(卢景霄),Gao Xiao-Yong(郜小勇), and Gu Jin-Hua(谷锦华). Chin. Phys. B, 2010, 19(5): 057205.
[5] The high deposition of microcrystalline silicon thin film by very high frequency plasma enhanced chemical vapour deposition and the fabrication of solar cells
Chen Yong-Sheng(陈永生), Wang Jian-Hua(汪建华), Lu Jing-Xiao(卢景霄), Zheng Wen(郑文), Gu Jin-Hua(谷锦华), Yang Shi-E(杨仕娥), Gao Xiao-Yong(郜小勇), Guo Xue-Jun(郭学军), Zhao Shang-Li(赵尚丽), and Gao Zhe(高哲). Chin. Phys. B, 2008, 17(9): 3464-3470.
[6] Effects of deposition pressure and plasma power on the growth and properties of boron-doped microcrystalline silicon films
Chen Yong-Sheng (陈永生), Yang Shi-E(杨仕娥), Wang Jian-Hua(汪建华), Lu Jing-Xiao(卢景霄), Gao Xiao-Yong(郜小勇), Gu Jin-Hua(谷景华), Zheng Wen(郑文), and Zhao Shang-Li(赵尚丽) . Chin. Phys. B, 2008, 17(4): 1394-1399.
[7] The influence of SiNx substrate on crystallinity of μc-Si film used in thin film transistors
Li Juan (李娟), Wu Chun-Ya (吴春亚), Liu Jian-Ping (刘建平), Zhao Shu-Yun (赵淑芸), Meng Zhi-Guo (孟志国), Xiong Shao-Zhen (熊绍珍), Zhang Li-Zhu (张丽珠). Chin. Phys. B, 2006, 15(6): 1330-1334.
[8] Effect of substrate temperature on the growth and properties of boron-doped microcrystalline silicon films
Lei Qing-Song (雷青松), Wu Zhi-Meng (吴志猛), Geng Xin-Hua (耿新华), Zhao Ying (赵颖), Sun Jian (孙健), Xi Jian-Ping (奚建平). Chin. Phys. B, 2006, 15(1): 213-218.
No Suggested Reading articles found!