Please wait a minute...
Chinese Physics, 2005, Vol. 14(8): 1613-1617    DOI: 10.1088/1009-1963/14/8/026
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES Prev   Next  

Study of tungsten wire array Z-pinch implosion on Qiang-Guang I facility

Xu Rong-Kun (徐荣昆), Li Zheng-Hong (李正宏), Yang Jian-Lun (杨建伦), Xu Ze-Ping (许泽平), Ding Ning (丁宁), Guo Cun (郭存), Jiang Shi-Lun (蒋世伦), Ning Jia-Min (宁佳敏), Xia Guang-Xin (夏广新), Li Lin-Bo (李林波), Song Feng-Jun (宋风军), Chen Jin-Chuan (陈进川)
China Academy of Engineering Physics, Mianyang 621900, China
Abstract  The main results of investigation on the tungsten wire array Z-pinch implosion experiment performed on Qiang-Guang I facility in 2003 are reported in this paper. A set of diagnostic equipments including an x-ray power meter (XRPM), a 1D spatial-temporal x-ray meter and a pinhole camera was used to study implosion process and x-ray radiation characteristics of the tungsten wire array. In the experiment, the maximum x-ray yield of 36.6kJ was obtained for an optimizing load with a diameter of 8mm and a length of 20mm, which consists of 32 5-μm-diameter tungsten wires. The experimental results show that the region of x-ray emission decreased at a rate of 6.4×106cm/s by analysing the data of the 1D spatial-temporal x-ray meter. It also shows that the peak time of x-ray radiation was prior to the time when plasmas were compressed into a near-axis region.
Keywords:  Z-pinch      multi-wire array      x-ray      plasma  
Received:  08 September 2004      Revised:  27 April 2005      Accepted manuscript online: 
PACS:  52.59.Qy (Wire array Z-pinches)  
  52.80.Qj (Explosions; exploding wires)  
  82.33.Vx (Reactions in flames, combustion, and explosions)  
  52.70.La (X-ray and γ-ray measurements)  
  52.25.Os (Emission, absorption, and scattering of electromagnetic radiation ?)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No 10035030).

Cite this article: 

Xu Rong-Kun (徐荣昆), Li Zheng-Hong (李正宏), Yang Jian-Lun (杨建伦), Xu Ze-Ping (许泽平), Ding Ning (丁宁), Guo Cun (郭存), Jiang Shi-Lun (蒋世伦), Ning Jia-Min (宁佳敏), Xia Guang-Xin (夏广新), Li Lin-Bo (李林波), Song Feng-Jun (宋风军), Chen Jin-Chuan (陈进川) Study of tungsten wire array Z-pinch implosion on Qiang-Guang I facility 2005 Chinese Physics 14 1613

[1] Investigations of moiré artifacts induced by flux fluctuations in x-ray dark-field imaging
Zhi-Li Wang(王志立), Zi-Han Chen(陈子涵), Yao Gu(顾瑶), Heng Chen(陈恒), and Xin Ge(葛昕). Chin. Phys. B, 2023, 32(3): 038704.
[2] Intense low-noise terahertz generation by relativistic laser irradiating near-critical-density plasma
Shijie Zhang(张世杰), Weimin Zhou(周维民), Yan Yin(银燕), Debin Zou(邹德滨), Na Zhao(赵娜), Duan Xie(谢端), and Hongbin Zhuo(卓红斌). Chin. Phys. B, 2023, 32(3): 035201.
[3] Structural evolution-enabled BiFeO3 modulated by strontium doping with enhanced dielectric, optical and superparamagneticproperties by a modified sol-gel method
Sharon V S, Veena Gopalan E, and Malini K A. Chin. Phys. B, 2023, 32(3): 037504.
[4] Analysis of refraction and scattering image artefacts in x-ray analyzer-based imaging
Li-Ming Zhao(赵立明), Tian-Xiang Wang(王天祥), Run-Kang Ma(马润康), Yao Gu(顾瑶), Meng-Si Luo(罗梦丝), Heng Chen(陈恒), Zhi-Li Wang(王志立), and Xin Ge(葛昕). Chin. Phys. B, 2023, 32(2): 028701.
[5] Ignition dynamics of radio frequency discharge in atmospheric pressure cascade glow discharge
Ya-Rong Zhang(张亚容), Qian-Han Han(韩乾翰), Jun-Lin Fang(方骏林), Ying Guo(郭颖), and Jian-Jun Shi(石建军). Chin. Phys. B, 2023, 32(2): 025201.
[6] Correction of intense laser-plasma interactions by QED vacuum polarization in collision of laser beams
Wen-Bo Chen(陈文博) and Zhi-Gang Bu(步志刚). Chin. Phys. B, 2023, 32(2): 025204.
[7] Time-resolved K-shell x-ray spectra of nanosecond laser-produced titanium tracer in gold plasmas
Zhencen He(何贞岑), Jiyan Zhang(张继彦), Jiamin Yang(杨家敏), Bing Yan(闫冰), and Zhimin Hu(胡智民). Chin. Phys. B, 2023, 32(1): 015202.
[8] Effect of laser focus in two-color synthesized waveform on generation of soft x-ray high harmonics
Yanbo Chen(陈炎波), Baochang Li(李保昌), Xuhong Li(李胥红), Xiangyu Tang(唐翔宇), Chi Zhang(张弛), and Cheng Jin(金成). Chin. Phys. B, 2023, 32(1): 014203.
[9] X-ray phase-sensitive microscope imaging with a grating interferometer: Theory and simulation
Jiecheng Yang(杨杰成), Peiping Zhu(朱佩平), Dong Liang(梁栋), Hairong Zheng(郑海荣), and Yongshuai Ge(葛永帅). Chin. Phys. B, 2022, 31(9): 098702.
[10] Erratum to “Accurate determination of film thickness by low-angle x-ray reflection”
Ming Xu(徐明), Tao Yang(杨涛), Wenxue Yu(于文学), Ning Yang(杨宁), Cuixiu Liu(刘翠秀), Zhenhong Mai(麦振洪), Wuyan Lai(赖武彦), and Kun Tao(陶琨). Chin. Phys. B, 2022, 31(9): 099901.
[11] Gamma induced changes in Makrofol/CdSe nanocomposite films
Ali A. Alhazime, M. ME. Barakat, Radiyah A. Bahareth, E. M. Mahrous,Saad Aldawood, S. Abd El Aal, and S. A. Nouh. Chin. Phys. B, 2022, 31(9): 097802.
[12] Integral cross sections for electron impact excitations of argon and carbon dioxide
Shu-Xing Wang(汪书兴) and Lin-Fan Zhu(朱林繁). Chin. Phys. B, 2022, 31(8): 083401.
[13] High sensitivity dual core photonic crystal fiber sensor for simultaneous detection of two samples
Pibin Bing(邴丕彬), Guifang Wu(武桂芳), Qing Liu(刘庆), Zhongyang Li(李忠洋),Lian Tan(谭联), Hongtao Zhang(张红涛), and Jianquan Yao(姚建铨). Chin. Phys. B, 2022, 31(8): 084208.
[14] Fundamental study towards a better understanding of low pressure radio-frequency plasmas for industrial applications
Yong-Xin Liu(刘永新), Quan-Zhi Zhang(张权治), Kai Zhao(赵凯), Yu-Ru Zhang(张钰如), Fei Gao(高飞),Yuan-Hong Song(宋远红), and You-Nian Wang(王友年). Chin. Phys. B, 2022, 31(8): 085202.
[15] Combination of spark discharge and nanoparticle-enhanced laser-induced plasma spectroscopy
Qing-Xue Li(李庆雪), Dan Zhang(张丹), Yuan-Fei Jiang(姜远飞), Su-Yu Li(李苏宇), An-Min Chen(陈安民), and Ming-Xing Jin(金明星). Chin. Phys. B, 2022, 31(8): 085201.
No Suggested Reading articles found!