Please wait a minute...
Chinese Physics, 2004, Vol. 13(5): 731-736    DOI: 10.1088/1009-1963/13/5/027
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Upgrading design of the 3B1A beamline for x-ray nanometre lithography of microelectronic devices at BSRF

Yi Fu-Ting (伊福廷)a, Ye Tian-Chun (叶甜春)b, Peng Liang-Qiang (彭良强)a, Chen Da-Peng (陈大鹏)b, Zhang Ju-Fang (张菊芳)a, Han Yong (韩勇)a
a Institute of High Energy Physics, China Academy of Science, Beijing 100039, China; b Institute of Micro Electronics, China Academy of Science, Beijing 100029, China
Abstract  Beijing Synchrotron Radiation Facility is a partly dedicated synchrotron radiation source operated in either parasitic or dedicated mode. The 3B1A beamline, extracted from a bending magnet, was originally designed as a soft x-ray beamline for submicro x-ray lithography with critical lateral size just below 1μm in 1988 and no change has been made since it was built. But later the required resolution of x-ray lithography has changed from sub-micrometre to the nanometre in the critical lateral size. This beamline can longer more meet the requirement for x-ray nano lithography and has to be modified to fit the purpose. To upgrade the design of the 3B1A beamline for x-ray nano lithography, a mirror is used to reflect and scan the x-ray beam for the nano lithography station, but the mirror's grazing angle is changed to 27.9mrad in the vertical direction, and the convex curve needs to be modified to fit the change; the tiny change of mirror scanning angle is firstly considered to improve the uniformity of the x-ray spot on the wafer by controlling the convex curve.
Keywords:  synchrotron radiation      x-ray      x-ray lithography      synchrotron radiation beamline  
Received:  19 September 2003      Revised:  21 December 2003      Accepted manuscript online: 
PACS:  85.40.Hp (Lithography, masks and pattern transfer)  
  07.85.Qe (Synchrotron radiation instrumentation)  
  07.85.Fv (X- and γ-ray sources, mirrors, gratings, and detectors)  
Fund: Project partially supported by the Chinese 863 Plan (Contract No 2002AA404150).

Cite this article: 

Yi Fu-Ting (伊福廷), Ye Tian-Chun (叶甜春), Peng Liang-Qiang (彭良强), Chen Da-Peng (陈大鹏), Zhang Ju-Fang (张菊芳), Han Yong (韩勇) Upgrading design of the 3B1A beamline for x-ray nanometre lithography of microelectronic devices at BSRF 2004 Chinese Physics 13 731

[1] Investigations of moiré artifacts induced by flux fluctuations in x-ray dark-field imaging
Zhi-Li Wang(王志立), Zi-Han Chen(陈子涵), Yao Gu(顾瑶), Heng Chen(陈恒), and Xin Ge(葛昕). Chin. Phys. B, 2023, 32(3): 038704.
[2] Structural evolution-enabled BiFeO3 modulated by strontium doping with enhanced dielectric, optical and superparamagneticproperties by a modified sol-gel method
Sharon V S, Veena Gopalan E, and Malini K A. Chin. Phys. B, 2023, 32(3): 037504.
[3] Analysis of refraction and scattering image artefacts in x-ray analyzer-based imaging
Li-Ming Zhao(赵立明), Tian-Xiang Wang(王天祥), Run-Kang Ma(马润康), Yao Gu(顾瑶), Meng-Si Luo(罗梦丝), Heng Chen(陈恒), Zhi-Li Wang(王志立), and Xin Ge(葛昕). Chin. Phys. B, 2023, 32(2): 028701.
[4] Time-resolved K-shell x-ray spectra of nanosecond laser-produced titanium tracer in gold plasmas
Zhencen He(何贞岑), Jiyan Zhang(张继彦), Jiamin Yang(杨家敏), Bing Yan(闫冰), and Zhimin Hu(胡智民). Chin. Phys. B, 2023, 32(1): 015202.
[5] Effect of laser focus in two-color synthesized waveform on generation of soft x-ray high harmonics
Yanbo Chen(陈炎波), Baochang Li(李保昌), Xuhong Li(李胥红), Xiangyu Tang(唐翔宇), Chi Zhang(张弛), and Cheng Jin(金成). Chin. Phys. B, 2023, 32(1): 014203.
[6] X-ray phase-sensitive microscope imaging with a grating interferometer: Theory and simulation
Jiecheng Yang(杨杰成), Peiping Zhu(朱佩平), Dong Liang(梁栋), Hairong Zheng(郑海荣), and Yongshuai Ge(葛永帅). Chin. Phys. B, 2022, 31(9): 098702.
[7] Erratum to “Accurate determination of film thickness by low-angle x-ray reflection”
Ming Xu(徐明), Tao Yang(杨涛), Wenxue Yu(于文学), Ning Yang(杨宁), Cuixiu Liu(刘翠秀), Zhenhong Mai(麦振洪), Wuyan Lai(赖武彦), and Kun Tao(陶琨). Chin. Phys. B, 2022, 31(9): 099901.
[8] Gamma induced changes in Makrofol/CdSe nanocomposite films
Ali A. Alhazime, M. ME. Barakat, Radiyah A. Bahareth, E. M. Mahrous,Saad Aldawood, S. Abd El Aal, and S. A. Nouh. Chin. Phys. B, 2022, 31(9): 097802.
[9] Integral cross sections for electron impact excitations of argon and carbon dioxide
Shu-Xing Wang(汪书兴) and Lin-Fan Zhu(朱林繁). Chin. Phys. B, 2022, 31(8): 083401.
[10] Electron emission induced by keV protons from tungsten surface at different temperatures
Li-Xia Zeng(曾利霞), Xian-Ming Zhou(周贤明), Rui Cheng(程锐), Yu Liu(柳钰), Xiao-An Zhang(张小安), and Zhong-Feng Xu(徐忠锋). Chin. Phys. B, 2022, 31(7): 073202.
[11] Nd L-shell x-ray emission induced by light ions
Xian-Ming Zhou(周贤明), Jing Wei(尉静), Rui Cheng(程锐), Yan-Hong Chen(陈燕红),Ce-Xiang Mei(梅策香), Li-Xia Zeng(曾利霞), Yu Liu(柳钰), Yan-Ning Zhang(张艳宁), Chang-Hui Liang(梁昌慧), Yong-Tao Zhao(赵永涛), and Xiao-An Zhang(张小安). Chin. Phys. B, 2022, 31(6): 063204.
[12] Efficient implementation of x-ray ghost imaging based on a modified compressive sensing algorithm
Haipeng Zhang(张海鹏), Ke Li(李可), Changzhe Zhao(赵昌哲), Jie Tang(汤杰), and Tiqiao Xiao(肖体乔). Chin. Phys. B, 2022, 31(6): 064202.
[13] Oscillator strength study of the excitations of valence-shell of C2H2 by high-resolution inelastic x-ray scattering
Qiang Sun(孙强), Ya-Wei Liu(刘亚伟), Yuan-Chen Xu(徐远琛), Li-Han Wang(王礼涵), Tian-Jun Li(李天钧), Shu-Xing Wang(汪书兴), Ke Yang(杨科), and Lin-Fan Zhu(朱林繁). Chin. Phys. B, 2022, 31(5): 053401.
[14] Temperature-dependent structure and magnetization of YCrO3 compound
Qian Zhao(赵前), Ying-Hao Zhu(朱英浩), Si Wu(吴思), Jun-Chao Xia(夏俊超), Peng-Fei Zhou(周鹏飞), Kai-Tong Sun(孙楷橦), and Hai-Feng Li(李海峰). Chin. Phys. B, 2022, 31(4): 046101.
[15] Characterization of the N-polar GaN film grown on C-plane sapphire and misoriented C-plane sapphire substrates by MOCVD
Xiaotao Hu(胡小涛), Yimeng Song(宋祎萌), Zhaole Su(苏兆乐), Haiqiang Jia(贾海强), Wenxin Wang(王文新), Yang Jiang(江洋), Yangfeng Li(李阳锋), and Hong Chen(陈弘). Chin. Phys. B, 2022, 31(3): 038103.
No Suggested Reading articles found!