Please wait a minute...
Chinese Physics, 2003, Vol. 12(3): 245-250    DOI: 10.1088/1009-1963/12/3/301
GENERAL   Next  

New applications of the homogeneous balance principle

Zhang Jin-Liang (张金良)a), Wang Yue-Ming (王跃明)b), Wang Ming-Liang (王明亮)b)c), Fang Zong-De (方宗德)a)
a School of Mechanical and Electronic Engineering, Northwestern Polytechnic University, Xi'an 710072, China; b) Department of Mathematics and Physics, Henan University of Science and Technology, Luoyang 471039, China;  c) Department of Mathematics, Lanzhou 730000, China
Abstract  The homogeneous balance principle has been widely applied to the exploration of nonlinear transformation, exact solutions (especially solitary wave solution), dromion and similarity reduction to the nonlinear partial differential equations in mathematical physics. In this paper, we use the homogeneous balance principle to derive Bäcklund transformations for nonlinear partial differential equations that have more nonlinear terms and more highest-order partial derivative terms. With the aid of the Bäcklund transformations derived here, we could obtain exact solutions to the nonlinear partial differential equations. The Davey-Stewartson equation and the Nizhnik-Novikov-Veselov equation are considered as the examples.
Keywords:  homogeneous balance principle      Davey-Stewartson equation      Nizhnik-Novikov-Veselov equation      Bäcklund transformation      exact solutions  
Received:  30 July 2002      Revised:  06 December 2002      Accepted manuscript online: 
PACS:  0290  
  0340K  
Fund: Project supported by the Natural Science Foundation of Henan Province of China (Grant No 0111050200) and by the Natural Science Foundation of Education Committee of Henan Province of China (Grant No 2000110008).

Cite this article: 

Zhang Jin-Liang (张金良), Wang Yue-Ming (王跃明), Wang Ming-Liang (王明亮), Fang Zong-De (方宗德) New applications of the homogeneous balance principle 2003 Chinese Physics 12 245

[1] Exact scattering states in one-dimensional Hermitian and non-Hermitian potentials
Ruo-Lin Chai(柴若霖), Qiong-Tao Xie(谢琼涛), Xiao-Liang Liu(刘小良). Chin. Phys. B, 2020, 29(9): 090301.
[2] Exact solution of the (1+2)-dimensional generalized Kemmer oscillator in the cosmic string background with the magnetic field
Yi Yang(杨毅), Shao-Hong Cai(蔡绍洪), Zheng-Wen Long(隆正文), Hao Chen(陈浩), Chao-Yun Long(龙超云). Chin. Phys. B, 2020, 29(7): 070302.
[3] Unified approach to various quantum Rabi models witharbitrary parameters
Xiao-Fei Dong(董晓菲), You-Fei Xie(谢幼飞), Qing-Hu Chen(陈庆虎). Chin. Phys. B, 2020, 29(2): 020302.
[4] Bright and dark soliton solutions for some nonlinear fractional differential equations
Ozkan Guner, Ahmet Bekir. Chin. Phys. B, 2016, 25(3): 030203.
[5] Application of asymptotic iteration method to a deformed well problem
Hakan Ciftci, H F Kisoglu. Chin. Phys. B, 2016, 25(3): 030201.
[6] Fusion, fission, and annihilation of complex waves for the (2+1)-dimensional generalized Calogero-Bogoyavlenskii-Schiff system
Zhu Wei-Ting (朱维婷), Ma Song-Hua (马松华), Fang Jian-Ping (方建平), Ma Zheng-Yi (马正义), Zhu Hai-Ping (朱海平). Chin. Phys. B, 2014, 23(6): 060505.
[7] Oscillating multidromion excitations in higher-dimensional nonlinear lattice with intersite and external on-site potentials using symbolic computation
B. Srividya, L. Kavitha, R. Ravichandran, D. Gopi. Chin. Phys. B, 2014, 23(1): 010307.
[8] Exact solutions of (3+1)-dimensional nonlinear incompressible non-hydrostatic Boussinesq equations
Liu Ping (刘萍), Li Zi-Liang (李子良). Chin. Phys. B, 2013, 22(5): 050204.
[9] Comparative study of travelling wave and numerical solutions for the coupled short pulse (CSP) equation
Vikas Kumar, R. K. Gupta, Ram Jiwari. Chin. Phys. B, 2013, 22(5): 050201.
[10] New exact solutions of (3+1)-dimensional Jimbo-Miwa system
Chen Yuan-Ming (陈元明), Ma Song-Hua (马松华), Ma Zheng-Yi (马正义). Chin. Phys. B, 2013, 22(5): 050510.
[11] Novel exact solutions of coupled nonlinear Schrödinger equations with time–space modulation
Chen Jun-Chao (陈俊超), Li Biao (李彪), Chen Yong (陈勇). Chin. Phys. B, 2013, 22(11): 110306.
[12] Skyrmion crystals in pseudo-spin-1/2 Bose–Einstein condensates
Zhang Cong (张聪), Guo Wen-An (郭文安), Feng Shi-Ping (冯世平), Yang Shi-Jie (杨师杰). Chin. Phys. B, 2013, 22(11): 110308.
[13] On certain new exact solutions of the Einstein equations for axisymmetric rotating fields
Lakhveer Kaur, R. K. Gupta. Chin. Phys. B, 2013, 22(10): 100203.
[14] New exact solutions of Einstein–Maxwell equations for magnetostatic fields
Nisha Goyal, R. K. Gupta. Chin. Phys. B, 2012, 21(9): 090401.
[15] Soliton excitations and chaotic patterns for the (2+1)-dimensional Boiti–Leon–Pempinelli system
Yang Zheng (杨征), Ma Song-Hua (马松华), Fang Jian-Ping (方建平). Chin. Phys. B, 2011, 20(6): 060506.
No Suggested Reading articles found!