Please wait a minute...
Acta Physica Sinica (Overseas Edition), 1997, Vol. 6(11): 822-828    DOI: 10.1088/1004-423X/6/11/003
GENERAL Prev   Next  

A GROUP OF EXACT (3+1) DIMENSIONAL CYLINDRICALLY SYMMETRIC WAVE SOLUTIONS TO THE EINSTEIN GRAVITATIONAL FIELD EQUATION

TANG MENG-XI (唐孟希)a, AU CHI (区智)b
a Department of Physics, Zhongshan University, Guangzhou 510275, China; b Department of Applied Mathematics, Hong Kong Polytechnic University, Kowloon, Hong Kong
Abstract  Starting with the diagonal spacetime metric tensor, the Einstein gravitational field equation is solved, and a set of exact (3+1) dimensional cylindrically symmetric wave solutions with two arbitrary functions are found. In these solutions all nonvanishing components of spacetime metric tensor are varying with the same propagating factor (ct-z) while the waves are travelling along z axis. The physical picture and the condition of positive energy density of the wave solutions are discussed.
Received:  14 January 1997      Accepted manuscript online: 
PACS:  04.20.Jb (Exact solutions)  
  02.40.-k (Geometry, differential geometry, and topology)  
  04.50.-h (Higher-dimensional gravity and other theories of gravity)  
  02.10.Ud (Linear algebra)  
Fund: Project supported partly by the National Natural Science Foundation of China.

Cite this article: 

TANG MENG-XI (唐孟希), AU CHI (区智) A GROUP OF EXACT (3+1) DIMENSIONAL CYLINDRICALLY SYMMETRIC WAVE SOLUTIONS TO THE EINSTEIN GRAVITATIONAL FIELD EQUATION 1997 Acta Physica Sinica (Overseas Edition) 6 822

[1] Rogue waves of a (3+1)-dimensional BKP equation
Yu-Qiang Yuan(袁玉强), Xiao-Yu Wu(武晓昱), and Zhong Du(杜仲). Chin. Phys. B, 2022, 31(12): 120202.
[2] Solutions of novel soliton molecules and their interactions of (2 + 1)-dimensional potential Boiti-Leon-Manna-Pempinelli equation
Hong-Cai Ma(马红彩), Yi-Dan Gao(高一丹), and Ai-Ping Deng(邓爱平). Chin. Phys. B, 2022, 31(7): 070201.
[3] Nonlinear dynamical wave structures of Zoomeron equation for population models
Ahmet Bekir and Emad H M Zahran. Chin. Phys. B, 2022, 31(6): 060401.
[4] Residual symmetries, consistent-Riccati-expansion integrability, and interaction solutions of a new (3+1)-dimensional generalized Kadomtsev—Petviashvili equation
Jian-Wen Wu(吴剑文), Yue-Jin Cai(蔡跃进), and Ji Lin(林机). Chin. Phys. B, 2022, 31(3): 030201.
[5] Darboux transformation and soliton solutions of a nonlocal Hirota equation
Yarong Xia(夏亚荣), Ruoxia Yao(姚若侠), and Xiangpeng Xin(辛祥鹏). Chin. Phys. B, 2022, 31(2): 020401.
[6] Soliton molecules and asymmetric solitons of the extended Lax equation via velocity resonance
Hongcai Ma(马红彩), Yuxin Wang(王玉鑫), and Aiping Deng(邓爱平). Chin. Phys. B, 2022, 31(1): 010201.
[7] Exact explicit solitary wave and periodic wave solutions and their dynamical behaviors for the Schamel-Korteweg-de Vries equation
Bin He(何斌) and Qing Meng(蒙清). Chin. Phys. B, 2021, 30(6): 060201.
[8] Closed form soliton solutions of three nonlinear fractional models through proposed improved Kudryashov method
Zillur Rahman, M Zulfikar Ali, and Harun-Or Roshid. Chin. Phys. B, 2021, 30(5): 050202.
[9] Exact solution of the Gaudin model with Dzyaloshinsky-Moriya and Kaplan-Shekhtman-Entin-Wohlman-Aharony interactions
Fa-Kai Wen(温发楷) and Xin Zhang(张鑫). Chin. Phys. B, 2021, 30(5): 050201.
[10] Novel traveling wave solutions and stability analysis of perturbed Kaup-Newell Schrödinger dynamical model and its applications
Xiaoyong Qian(钱骁勇), Dianchen Lu(卢殿臣), Muhammad Arshad, and Khurrem Shehzad. Chin. Phys. B, 2021, 30(2): 020201.
[11] High-order rational solutions and resonance solutions for a (3+1)-dimensional Kudryashov-Sinelshchikov equation
Yun-Fei Yue(岳云飞), Jin Lin(林机), and Yong Chen(陈勇). Chin. Phys. B, 2021, 30(1): 010202.
[12] Bifurcation analysis and exact traveling wave solutions for (2+1)-dimensional generalized modified dispersive water wave equation
Ming Song(宋明)†, Beidan Wang(王贝丹), and Jun Cao(曹军). Chin. Phys. B, 2020, 29(10): 100206.
[13] Nonlocal symmetries and similarity reductions for Korteweg-de Vries-negative-order Korteweg-de Vries equation
Heng-Chun Hu(胡恒春), Fei-Yan Liu(刘飞艳). Chin. Phys. B, 2020, 29(4): 040201.
[14] The global monopole spacetime and its topological charge
Hongwei Tan(谭鸿威), Jinbo Yang(杨锦波), Jingyi Zhang(张靖仪), Tangmei He(何唐梅). Chin. Phys. B, 2018, 27(3): 030401.
[15] Soliton-cnoidal interactional wave solutions for the reduced Maxwell-Bloch equations
Li-Li Huang(黄丽丽), Zhi-Jun Qiao(乔志军), Yong Chen(陈勇). Chin. Phys. B, 2018, 27(2): 020201.
No Suggested Reading articles found!