Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(2): 020201    DOI: 10.1088/1674-1056/27/2/020201
GENERAL   Next  

Soliton-cnoidal interactional wave solutions for the reduced Maxwell-Bloch equations

Li-Li Huang(黄丽丽)1,3, Zhi-Jun Qiao(乔志军)2, Yong Chen(陈勇)1,3,4
1. Shanghai Key Laboratory of Trustworthy Computing, East China Normal University, Shanghai 200062, China;
2. School of Mathematical and Statistical Sciences, The University of Texs Rio Grande Valley, Edinburg, TX 78539, USA;
3. MOE International Joint Laboratory of Trustworthy Software, East China Normal University, Shanghai 200062, China;
4. Department of Physics, Zhejiang Normal University, Jinhua 321004, China
Abstract  In this paper, we study soliton-cnoidal wave solutions for the reduced Maxwell-Bloch equations. The truncated Painlevé analysis is utilized to generate a consistent Riccati expansion, which leads to solving the reduced Maxwell-Bloch equations with solitary wave, cnoidal periodic wave, and soliton-cnoidal interactional wave solutions in an explicit form. Particularly, the soliton-cnoidal interactional wave solution is obtained for the first time for the reduced Maxwell-Bloch equations. Finally, we present some figures to show properties of the explicit soliton-cnoidal interactional wave solutions as well as some new dynamical phenomena.
Keywords:  reduced Maxwell-Bloch equations      consistent Riccati expansion      soliton-cnoidal interactional wave solutions  
Received:  20 October 2017      Revised:  17 November 2017      Accepted manuscript online: 
PACS:  02.30.Ik (Integrable systems)  
  05.45.Yv (Solitons)  
  04.20.Jb (Exact solutions)  
Fund: Project supported by the Global Change Research Program of China (Grant No. 2015CB953904), the National Natural Science Foundation of China (Grant Nos. 11675054 and 11435005), the Outstanding Doctoral Dissertation Cultivation Plan of Action (Grant No. YB2016039), and Shanghai Collaborative Innovation Center of Trustworthy Software for Internet of Things (Grant No. ZF1213). Some work was done during the third author (Chen) visited the University of Texas-Rio Grande Valley (UTRGV). The second author (Qiao) thanks the UTRGV President Endowed Professorship (Grant No. 450000123), and the UTRGV College of Science Seed Grant (Grant No. 240000013) for partial support.
Corresponding Authors:  Yong Chen     E-mail:  ychen@sei.ecnu.edu.cn
About author:  02.30.IK; 05.45.Yv; 04.20.Jb

Cite this article: 

Li-Li Huang(黄丽丽), Zhi-Jun Qiao(乔志军), Yong Chen(陈勇) Soliton-cnoidal interactional wave solutions for the reduced Maxwell-Bloch equations 2018 Chin. Phys. B 27 020201

[1] Maimistov A I and Basharov A M 1999 Nonlinear optical waves (Berlin:Springer Press)
[2] Eilbeck J C, Gibbon J D, Caudrey P J and Bullough R K 1973 J. Phys. A:Math. Nucl. Gen. 6 1337
[3] McCall S L and Hahn E L 1969 Phys. Rev. 183 457
[4] McCall S L and Hahn E L 1967 Phys. Rev. Lett. 18 908
[5] Jen S, Mandel B C L and Wolf E 1978 Coherence and quantum optics, Vol. 4(New York:Plenum Press)
[6] Sun B, Qiao Z J and Chen J 2012 J. Appl. Remote Sens. 6 063547
[7] Sun B, Gu H C, Hu M Q and Qiao Z J 2015 Proc. SPIE, Compressive Sensing IV 9484 948402
[8] Gibbon J D, Caudrey P J, Bullough R K and Eilbeck J C 1973 Lett. Nuovo Cimento 8 775
[9] Ablowitz M J and Clarkson P A 1991 Solitons, Nonlinear Evolution Equations and Inverse Scattering
[10] Caudrey P J, Eilbeck J C and Gibbon J D 1974 IMA J. Appl. Math. 14 375
[11] Caudrey P J 2011 Phil. Trans. R. Soc. A 369 1215
[12] Hirota R 2004 The Direct Method in Soliton Theory (Cambridge:Cambridge University Press)
[13] Guo R, Tian B and Wang L 2012 Nonlinear Dyn. 69 2009
[14] Shi G H and Fan F 2017 Superlattices and Microstructures 101 488
[15] Matveev V B and Salle M A 1991 Darboux transformations and solitons (Berlin:Springer)
[16] Grauel A 1986 J. Phys. A:Math. Gen. 19 479
[17] Grauel A 1984 Lett. Nuovo Cimento 41 263
[18] Aiyer R N 1983 J. Phys. A:Math. Nucl. Gen. 16 1809
[19] Wei J, Wang X and Geng X G 2018 Commun. Nonlinear Sci. Numer. Simul. 59 1
[20] Lou S Y 2015 Stud. Appl. Math. 134 372
[21] Wang Y H and Wang H 2017 Nonlinear Dyn. 89 235
[22] Cheng X P, Chen C L and Lou S Y 2014 Wave Motion 51 1298
[23] Hu X R and Chen Y 2015 Z. Naturforsch. 70 729
[24] Ren B 2015 Phys Scr. 90 065206
[25] Hu X R and Li Y Q 2016 Appl. Math. Lett. 51 20
[26] Chen J C and Ma Z Y 2017 Appl. Math. Lett. 64 87
[27] Wang Q, Chen Y and Zhang H Q 2005 Chaos, Solitons and Fractals 25 1019
[28] Wang Y H and Wang H 2014 Phys. Scr. 89 125203
[29] Huang L L and Chen Y 2016 Chin. Phys. B 25 060201
[30] Huang L L and Chen Y 2017 Appl. Math. Lett. 64 177
[31] Ren B, Xu X J and Lin J 2009 J. Math. Phys. 50 123505
[32] Xie S Y and Lin J 2010 Chin. Phys. B 19 050201
[33] Liu Y K and Li B 2017 Chin. Phys. Lett. 34 010202
[1] Consistent Riccati expansion solvability, symmetries, and analytic solutions of a forced variable-coefficient extended Korteveg-de Vries equation in fluid dynamics of internal solitary waves
Ping Liu(刘萍), Bing Huang(黄兵), Bo Ren(任博), and Jian-Rong Yang(杨建荣). Chin. Phys. B, 2021, 30(8): 080203.
[2] Bäcklund transformations, consistent Riccati expansion solvability, and soliton-cnoidal interaction wave solutions of Kadomtsev-Petviashvili equation
Ping Liu(刘萍), Jie Cheng(程杰), Bo Ren(任博), Jian-Rong Yang(杨建荣). Chin. Phys. B, 2020, 29(2): 020201.
[3] Nonlocal symmetry and exact solutions of the (2+1)-dimensional modified Bogoyavlenskii-Schiff equation
Li-Li Huang(黄丽丽), Yong Chen(陈勇). Chin. Phys. B, 2016, 25(6): 060201.
[4] The consistent Riccati expansion and new interaction solution for a Boussinesq-type coupled system
Ruan Shao-Qing (阮少卿), Yu Wei-Feng (余炜沣), Yu Jun (俞军), Yu Guo-Xiang (余国祥). Chin. Phys. B, 2015, 24(6): 060201.
No Suggested Reading articles found!