1 Henan Key Laboratory of Quantum Information and Cryptography, SSE IEU, Zhengzhou 450001, China; 2 Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China
Abstract We present two efficient quantum adiabatic algorithms for Bernstein-Vazirani problem and Simon's problem. We show that the time complexities of the algorithms for Bernstein-Vazirani problem and Simon's problem are O(1) and O(n), respectively, which are the same complexities as the corresponding algorithms in quantum circuit model. In these two algorithms, the adiabatic Hamiltonians are realized by unitary interpolation instead of standard linear interpolation. Comparing with the adiabatic algorithms using linear interpolation, the energy gaps of our algorithms keep constant. Therefore, the complexities are much easier to analyze using this method.
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.