Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(10): 104211    DOI: 10.1088/1674-1056/ab3f9b
RAPID COMMUNICATION Prev   Next  

Characterize and optimize the four-wave mixing in dual-interferometer coupled silicon microrings

Chao Wu(吴超)1, Yingwen Liu(刘英文)1, Xiaowen Gu(顾晓文)2, Shichuan Xue(薛诗川)1, Xinxin Yu(郁鑫鑫)2, Yuechan Kong(孔月婵)2, Xiaogang Qiang(强晓刚)1, Junjie Wu(吴俊杰)1, Zhihong Zhu(朱志宏)1, Ping Xu(徐平)1,3
1 Institute for Quantum Information and State Key Laboratory of High Performance Computing, College of Computer, College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha 410073, China;
2 Science and Technology on Monolithic Integrated Circuits and Modules Laboratory, Nanjing Electronic Devices Institute, Nanjing 210016, China;
3 National Laboratory of Solid State Microstructures and School of Physics, Nanjing University, Nanjing 210093, China
Abstract  

By designing and fabricating a series of dual-interferometer coupled silicon microrings, the coupling condition of the pump, signal, and idler beams can be engineered independently and then we carried out both the continuous-wave and pulse pumped four-wave mixing experiments to verify the dependence of conversion efficiency on the coupling conditions of the four interacting beams, respectively. Under the continuous-wave pump, the four-wave mixing efficiency gets maximized when both the pump and signal/idler beams are closely operated at the critical coupling point, while for the pulse pump case, the efficiency can be enhanced greatly when the pump and converted idler beams are all overcoupled. These experiment results agree well with our theoretical calculations. Our design provides a platform for explicitly characterizing the four-wave mixing under different pumping conditions, and offers a method to optimize the four-wave mixing, which will facilitate the development of on-chip all-optical signal processing with a higher efficiency or reduced pump power.

Keywords:  silicon resonators      four-wave mixing      Mach-Zehnder interferometer  
Received:  26 August 2019      Accepted manuscript online: 
PACS:  42.65.-k (Nonlinear optics)  
  42.65.Wi (Nonlinear waveguides)  
  42.82.-m (Integrated optics)  
  42.82.Et (Waveguides, couplers, and arrays)  
Fund: 

Project supported by the National Key Research and Development Program of China (Grant No. 2017YFA0303700), the National Natural Science Foundation of China (Grant Nos. 61632021, 11627810, 11690031, and 11621091), and Open Funds from the State Key Laboratory of High Performance Computing of China (HPCL, National University of Defense Technology).

Corresponding Authors:  Ping Xu     E-mail:  pingxu520@nju.edu.cn

Cite this article: 

Chao Wu(吴超), Yingwen Liu(刘英文), Xiaowen Gu(顾晓文), Shichuan Xue(薛诗川), Xinxin Yu(郁鑫鑫), Yuechan Kong(孔月婵), Xiaogang Qiang(强晓刚), Junjie Wu(吴俊杰), Zhihong Zhu(朱志宏), Ping Xu(徐平) Characterize and optimize the four-wave mixing in dual-interferometer coupled silicon microrings 2019 Chin. Phys. B 28 104211

[1] Leuthold J, Koos C and Freude W 2010 Nat. Photon. 4 535
[2] Wang Z L, Liu H J, Sun Q B, Nan H, Li S P and Jing H 2016 Laser Phys. 26 075403
[3] Turner A C, Foster M A, Gaeta A L and Lipson M 2008 Opt. Express 16 4881
[4] Ayotte S, Rong H S, Xu S B, Cohen O and Paniccia M J 2007 Opt. Lett. 32 2393
[5] Foster M A, Turner A C, Sharping J E, Schmidt B S, Lipson M and Gaeta A L 2006 Nature 441 960
[6] Salem R, Foster M A, Turnerfoster A C, Geraghty D F, Lipson M and Gaeta A L 2009 Opt. Express 17 4324
[7] Sharping J E, Lee K F, Foster M A, Turner A C, Schmidt B S, Lipson M, Gaeta A L and Kumar P 2006 Opt. Express 14 12388
[8] Cui Y and Lieber C M 2001 Science 291 851
[9] Strain M J, Lacava C, Meriggi L, Cristiani I and Sorel M 2015 Opt. Lett. 40 1274
[10] Bristow A D, Rotenberg N and Van Driel H M 2007 Appl. Phys. Lett. 90 191104
[11] Ji M X, Cai H, Deng L K, Huang Y, Huang Q Z, Xia J S, Li Z Y, Yu J Z and Wang Y 2015 Opt. Express 23 18679
[12] Mathlouthi W, Rong H S and Paniccia M J 2008 Opt. Express 16 16735
[13] Ong J R, Cooper M L, Gupta G, Green W M J, Assefa S, Xia F N and Mookherjea S 2011 Opt. Lett. 36 2964
[14] Ong J R, Kumar R and Mookherjea S 2014 Opt. Lett. 39 4439
[15] Sun T B, Yang W J and Changhasnain C J 2015 Opt. Express 23 29565
[16] Cai M, Painter O and Vahala K J 2000 Phys. Rev. Lett. 85 74
[17] Yariv A 2002 IEEE Photonics Technol. Lett. 14 483
[18] Ong J R, Kumar R, Aguinaldo R and Mookherjea S 2013 IEEE Photonics Technol.Lett. 25 1699
[19] Li D Y, Chang W J, Liu C, Liu D M and Zhang M M 2018 IEEE Photonics Technol. Lett. 30 1559
[20] Barbarossa G, Matteo A M and Armenise M N 1995 J. Light. Technol. 13 148
[21] Chen L, Sherwooddroz N and Lipson M 2007 Opt. Lett. 32 3361
[22] Eid N, Boeck R, Jayatilleka H, Chrostowski L, Shi W, and Jaeger N A F 2016 Opt. Express 24 29009
[23] Shen H, Khan M H, Fan L, Zhao L, Xuan Y, Ouyang J, Varghese L T and Qi M H 2010 Opt. Express 18 18067
[24] Wang J W and Dai D X 2010 Opt. Lett. 35 4229
[25] Tison C C, Steidle J A, Fanto M L, Wang Z, Mogent N A, Rizzo A, Preble S F and Alsing P M 2017 Opt. Express 25 33088
[1] Modulated spatial transmission signals in the photonic bandgap
Wenqi Xu(许文琪), Hui Wang(王慧), Daohong Xie(谢道鸿), Junling Che(车俊岭), and Yanpeng Zhang(张彦鹏). Chin. Phys. B, 2022, 31(12): 124209.
[2] Fringe visibility and correlation in Mach-Zehnder interferometer with an asymmetric beam splitter
Yan-Jun Liu(刘彦军), Mei-Ya Wang(王美亚), Zhong-Cheng Xiang(相忠诚), and Hai-Bin Wu(吴海滨). Chin. Phys. B, 2022, 31(11): 110305.
[3] Bandwidth-tunable silicon nitride microring resonators
Jiacheng Liu(刘嘉成), Chao Wu(吴超), Gongyu Xia(夏功榆), Qilin Zheng(郑骑林), Zhihong Zhu(朱志宏), and Ping Xu(徐平). Chin. Phys. B, 2022, 31(1): 014201.
[4] Controllable four-wave mixing response in a dual-cavity hybrid optomechanical system
Lei Shang(尚蕾), Bin Chen(陈彬), Li-Li Xing(邢丽丽), Jian-Bin Chen(陈建宾), Hai-Bin Xue(薛海斌), and Kang-Xian Guo(郭康贤). Chin. Phys. B, 2021, 30(5): 054209.
[5] A 32-channel 100 GHz wavelength division multiplexer by interleaving two silicon arrayed waveguide gratings
Changjian Xie(解长健), Xihua Zou (邹喜华), Fang Zou(邹放), Lianshan Yan(闫连山), Wei Pan(潘炜), and Yong Zhang(张永). Chin. Phys. B, 2021, 30(12): 120703.
[6] A two-mode squeezed light based on a double-pump phase-matching geometry
Xuan-Jian He(何烜坚), Jun Jia(贾俊), Gao-Feng Jiao(焦高锋), Li-Qing Chen(陈丽清), Chun-Hua Yuan(袁春华), Wei-Ping Zhang(张卫平). Chin. Phys. B, 2020, 29(7): 074207.
[7] Coherent 420 nm laser beam generated by four-wave mixing in Rb vapor with a single continuous-wave laser
Hao Liu(刘浩), Jin-Peng Yuan(元晋鹏), Li-Rong Wang(汪丽蓉), Lian-Tuan Xiao(肖连团), Suo-Tang Jia(贾锁堂). Chin. Phys. B, 2020, 29(4): 043203.
[8] Near 100% spectral-purity photons from reconfigurable micro-rings
Pingyu Zhu(朱枰谕), Yingwen Liu(刘英文), Chao Wu(吴超), Shichuan Xue(薛诗川), Xinyao Yu(于馨瑶), Qilin Zheng(郑骑林), Yang Wang(王洋), Xiaogang Qiang(强晓刚), Junjie Wu(吴俊杰), and Ping Xu(徐平). Chin. Phys. B, 2020, 29(11): 114201.
[9] Fringe visibility and distinguishability in two-path interferometer with an asymmetric beam splitter
Yanjun Liu(刘彦军), Jing Lu(卢竞), Zhihui Peng(彭智慧), Lan Zhou(周兰), Dongning Zheng(郑东宁). Chin. Phys. B, 2019, 28(3): 030303.
[10] Simultaneous polarization separation and switching for 100-Gbps DP-QPSK signals in backbone networks
Yu-Long Su(苏玉龙), Huan Feng(冯欢), Hui Hu(胡辉), Wei Wang(汪伟), Tao Duan(段弢), Yi-Shan Wang(王屹山), Jin-Hai Si(司金海), Xiao-Ping Xie(谢小平), He-Ning Yang(杨合宁), Xin-Ning Huang(黄新宁). Chin. Phys. B, 2019, 28(2): 024216.
[11] Electro-optomechanical switch via tunable bistability and four-wave mixing
Kamran Ullah. Chin. Phys. B, 2019, 28(11): 114209.
[12] Phase precision of Mach-Zehnder interferometer in PM2.5 air pollution
Duan Xie(谢端), Haifeng Chen(陈海峰). Chin. Phys. B, 2018, 27(7): 070304.
[13] Enhancement of multiple four-wave mixing via cascaded fibers with discrete dispersion decreasing
Jia-Bao Li(李嘉宝), Ling-Jie Kong(孔令杰), Xiao-Sheng Xiao(肖晓晟), Chang-Xi Yang(杨昌喜). Chin. Phys. B, 2017, 26(6): 064205.
[14] Probe gain via four-wave mixing based on spontaneously generated coherence
Hong Yang(杨红), Ting-gui Zhang(张廷桂), Yan Zhang(张岩). Chin. Phys. B, 2017, 26(2): 024204.
[15] Temperature-induced effect on refractive index of graphene based on coated in-fiber Mach-Zehnder interferometer
Li-Jun Li(李丽君), Shun-Shun Gong(宫顺顺), Yi-Lin Liu(刘仪琳), Lin Xu(徐琳), Wen-Xian Li(李文宪), Qian Ma(马茜), Xiao-Zhe Ding(丁小哲), Xiao-Li Guo(郭晓丽). Chin. Phys. B, 2017, 26(11): 116504.
No Suggested Reading articles found!