Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(10): 104210    DOI: 10.1088/1674-1056/ab427b
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Multi-objective strategy to optimize dithering technique for high-quality three-dimensional shape measurement

Ning Cai(蔡宁)1,2, Zhe-Bo Chen(陈浙泊)2, Xiang-Qun Cao(曹向群)1, Bin Lin(林斌)1,2
1 State Key Laboratory of Modern Optical Instrumentation, CNERC for Optical Instruments, Zhejiang University, Hangzhou 310027, China;
2 Research Institute of Zhejiang University-Taizhou, Taizhou 318000, China
Abstract  Dithering optimization techniques can be divided into the phase-optimized technique and the intensity-optimized technique. The problem with the former is the poor sensitivity to various defocusing amounts, and the problem with the latter is that it cannot enhance phase quality directly nor efficiently. In this paper, we present a multi-objective optimization framework for three-dimensional (3D) measurement by utilizing binary defocusing technique. Moreover, a binary patch optimization technique is used to solve the time-consuming issue of genetic algorithm. It is demonstrated that the presented technique consistently obtains significant phase performance improvement under various defocusing amounts.
Keywords:  three-dimensional (3D) shape measurement      multi-objective      dithering      genetic algorithm  
Received:  11 July 2019      Revised:  17 July 2019      Accepted manuscript online: 
PACS:  42.30.-d (Imaging and optical processing)  
  42.62.Eh (Metrological applications; optical frequency synthesizers for precision spectroscopy)  
  06.30.Ft (Time and frequency)  
  42.30.Rx (Phase retrieval)  
Fund: Project supported by the Zhejiang Provincial Welfare Technology Applied Research Project, China (Grant No. 2017C31080).
Corresponding Authors:  Bin Lin     E-mail:  wjlin@zju.edu.cn

Cite this article: 

Ning Cai(蔡宁), Zhe-Bo Chen(陈浙泊), Xiang-Qun Cao(曹向群), Bin Lin(林斌) Multi-objective strategy to optimize dithering technique for high-quality three-dimensional shape measurement 2019 Chin. Phys. B 28 104210

[1] Zhang W Z, Chen Z B, Xia B F, Lin B and Cao X Q 2014 Chin. Phys. B 23 044212
[2] Qiao N S, Cai X H and Yao C M 2009 Chin. Phys. B 18 4881
[3] Li B and Zhang S 2017 Opt. Lasers Eng. 96 117
[4] Zhang L, Chen Q, Zuo C and Feng S J 2018 Appl. Opt. 57 1378
[5] Lu F and Wu C D 2017 J. Eur. Opt. Soc.-Rapid 13 29
[6] Wang Y J, Jiang C F and Zhang S 2017 Opt. Express 25 30177
[7] Li B W, An Y T, Cappelleri D and Zhang S 2017 Int. J. Intell. Robot. Appl. 1 86
[8] Su X Y, Zhou W S, Bally G V and Vukicevic D 1992 Opt. Commun. 94 561
[9] Lei S Y and Zhang S 2009 Opt. Lett. 34 3080
[10] Ayubi G A, Ayubi J A, Martino J M D and Ferrari J A 2010 Opt. Lett. 35 3682
[11] Xian T and Su X Y 2001 Appl. Opt. 40 1201
[12] Schuchman L 1964 IEEE Trans. Commun. Technol. 12 162
[13] Wang Y J and Zhang S 2012 Appl. Opt. 51 6631
[14] Dai J F and Zhang S 2013 Opt. Laser Eng. 51 790
[15] Dai J F, Li B W and Zhang S 2014 Opt. Lasers Eng. 53 79
[16] Konak A, Coit D W and Smith A E 2006 Reliab. Eng. Syst. Saf. 91 992
[17] Lohry W and Zhang S 2013 Opt. Lett. 38 540
[18] Sun J S, Zuo C, Feng S J, Yu S L, Zhang Y Z and Chen Q 2015 Opt. Lasers Eng. 66 158
[19] Huntley J H and Saldner H 1993 Appl. Opt. 32 3047
[20] Lu F, Wu C D and Yang J K 2019 Opt. Commun. 430 246
[1] Adaptive genetic algorithm-based design of gamma-graphyne nanoribbon incorporating diamond-shaped segment with high thermoelectric conversion efficiency
Jingyuan Lu(陆静远), Chunfeng Cui(崔春凤), Tao Ouyang(欧阳滔), Jin Li(李金), Chaoyu He(何朝宇), Chao Tang(唐超), and Jianxin Zhong(钟建新). Chin. Phys. B, 2023, 32(4): 048401.
[2] Memristor's characteristics: From non-ideal to ideal
Fan Sun(孙帆), Jing Su(粟静), Jie Li(李杰), Shukai Duan(段书凯), and Xiaofang Hu(胡小方). Chin. Phys. B, 2023, 32(2): 028401.
[3] Characteristics of piecewise linear symmetric tri-stable stochastic resonance system and its application under different noises
Gang Zhang(张刚), Yu-Jie Zeng(曾玉洁), and Zhong-Jun Jiang(蒋忠均). Chin. Phys. B, 2022, 31(8): 080502.
[4] Design optimization of broadband extreme ultraviolet polarizer in high-dimensional objective space
Shang-Qi Kuang(匡尚奇), Bo-Chao Li(李博超), Yi Wang(王依), Xue-Peng Gong(龚学鹏), and Jing-Quan Lin(林景全). Chin. Phys. B, 2022, 31(7): 077802.
[5] Quantum walk search algorithm for multi-objective searching with iteration auto-controlling on hypercube
Yao-Yao Jiang(姜瑶瑶), Peng-Cheng Chu(初鹏程), Wen-Bin Zhang(张文彬), and Hong-Yang Ma(马鸿洋). Chin. Phys. B, 2022, 31(4): 040307.
[6] A spintronic memristive circuit on the optimized RBF-MLP neural network
Yuan Ge(葛源), Jie Li(李杰), Wenwu Jiang(蒋文武), Lidan Wang(王丽丹), and Shukai Duan(段书凯). Chin. Phys. B, 2022, 31(11): 110702.
[7] A novel receiver-transmitter metasurface for a high-aperture-efficiency Fabry-Perot resonator antenna
Peng Xie(谢鹏), Guangming Wang(王光明), Binfeng Zong(宗彬锋), and Xiaojun Zou(邹晓鋆). Chin. Phys. B, 2021, 30(8): 084103.
[8] Refocusing and locating effect of fluorescence scattering field
Jian-Gong Cui(崔建功), Ya-Xin Yu(余亚鑫), Xiao-Xia Chu(楚晓霞), Rong-Yu Zhao(赵荣宇), Min Zhu(祝敏), Fan Meng(孟凡), and Wen-Dong Zhang(张文栋). Chin. Phys. B, 2021, 30(12): 124210.
[9] Optimized dithering technique in frequency domain for high-quality three-dimensional depth data acquisition
Ning Cai(蔡宁), Zhe-Bo Chen(陈浙泊), Xiang-Qun Cao(曹向群), Bin Lin(林斌). Chin. Phys. B, 2019, 28(8): 084202.
[10] Fast Fourier single-pixel imaging based on Sierra-Lite dithering algorithm
Zhen-Yu Liang(梁振宇), Zheng-Dong Cheng(程正东), Yan-Yan Liu(刘严严), Kuai-Kuai Yu(于快快), Yang-Di Hu(胡洋頔). Chin. Phys. B, 2019, 28(6): 064202.
[11] Broadband achromatic phase retarder based on metal-multilayer dielectric grating
Na Li(李娜), Wei-Jin Kong(孔伟金), Feng Xia(夏峰), Mao-Jin Yun(云茂金). Chin. Phys. B, 2018, 27(5): 054202.
[12] Electronic transport properties of lead nanowires
Lishu Zhang(张力舒), Yi Zhou(周毅), Xinyue Dai(代新月), Zhenyang Zhao(赵珍阳), Hui Li(李辉). Chin. Phys. B, 2017, 26(7): 073102.
[13] Optimization of multi-color laser waveform for high-order harmonic generation
Cheng Jin(金成), C D Lin(林启东). Chin. Phys. B, 2016, 25(9): 094213.
[14] An improved genetic algorithm with dynamic topology
Kai-Quan Cai(蔡开泉), Yan-Wu Tang(唐焱武), Xue-Jun Zhang(张学军), Xiang-Min Guan(管祥民). Chin. Phys. B, 2016, 25(12): 128904.
[15] Application of the nonlinear time series prediction method of genetic algorithm for forecasting surface wind of point station in the South China Sea with scatterometer observations
Jian Zhong(钟剑), Gang Dong(董钢), Yimei Sun(孙一妹), Zhaoyang Zhang(张钊扬), Yuqin Wu(吴玉琴). Chin. Phys. B, 2016, 25(11): 110502.
No Suggested Reading articles found!