Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(6): 064205    DOI: 10.1088/1674-1056/26/6/064205
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Enhancement of multiple four-wave mixing via cascaded fibers with discrete dispersion decreasing

Jia-Bao Li(李嘉宝), Ling-Jie Kong(孔令杰), Xiao-Sheng Xiao(肖晓晟), Chang-Xi Yang(杨昌喜)
State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing 100084, China
Abstract  

Cascaded fiber geometry with the dispersion of each fiber decreasing is proposed to enhance the multiple four-wave mixing (FWM) generation. The first fiber with relatively large dispersion initiates and accelerates the expansion of multiple FWM, and the second fiber with small dispersion would allow the phase-matching process (thus the spectrum broadening) to keep going. Numerical and experimental results show that with this geometry not only multiple FWM expansion can be accelerated, but also the efficiency of multiple FWM products can be effectively improved with shorter fibers.

Keywords:  four-wave mixing      optical fiber      cascaded process  
Received:  22 November 2016      Revised:  27 January 2017      Accepted manuscript online: 
PACS:  42.65.Ky (Frequency conversion; harmonic generation, including higher-order harmonic generation)  
  42.81.Dp (Propagation, scattering, and losses; solitons)  
Fund: 

Project supported by the National Key Scientific Instrument and Equipment Development Project, China (Grant No. 2014YQ510403) and the National Natural Science Foundation of China (Grant Nos. 61377039 and 51527901).

Corresponding Authors:  Xiao-Sheng Xiao     E-mail:  xsxiao@tsinghua.edu.cn

Cite this article: 

Jia-Bao Li(李嘉宝), Ling-Jie Kong(孔令杰), Xiao-Sheng Xiao(肖晓晟), Chang-Xi Yang(杨昌喜) Enhancement of multiple four-wave mixing via cascaded fibers with discrete dispersion decreasing 2017 Chin. Phys. B 26 064205

[1] S Jr A C, Boggio J C, Rieznik A A, Hernandez-Figueroa H E, Fragnito H L, and Knight J C 2008 Opt. Express 16 2816
[2] Cruz F C 2008 Opt. Express 16 13267
[3] Myslivets E, Kuo B P, Alic N and Radic S 2012 Opt. Express 20 3331
[4] McKinstrie C J and Raymer M G 2006 Opt. Express 14 9600
[5] Li Y, Hou J, Jiang Z, Huang L and Leng J 2014 Appl. Opt. 53 1583
[6] Jones D, Diddams S, Ranka J, Stentz A, Windeler R, Hall J and Cundiff S 2000 Science 288 635
[7] Zhao G, Xiao X, Meng F, Mei J and Yang C 2013 Chin. Phys. B 22 104205
[8] Del'Haye P, Schliesser A, Arcizet O, Wilken T, Holzwarth R and Kippenberg T J 2007 Nature 450 1214
[9] Zajnulina M, Boggio J M C, Bohm M, Rieznik A A, Fremberg T, Haynes R and Roth M M 2015 Appl. Phys. B- Laser Opt. 120 171
[10] Macfarlane G, Bell A, Riis E and Ferguson A 1996 Opt. Lett. 21 534
[11] Sefler G and Kitayama K 1998 J. Lightwave Technol. 16 1596
[12] Gao S and Xiao X 2012 Opt. Commun. 285 784
[13] Cerqueira A, J D Marconi S Jr, Hernandez-Figueroa H E and Fragnito H L 2009 Opt. Commun. 282 4436
[14] Li J, Xiao X, Kong L and Yang C 2012 Opt. Express 20 21940
[15] Yaman F, Lin Q, Radic S and Agrawal G P 2004 Photon. Technol. Lett. 16 1292
[16] Kurosu T, Takahashi M, Yagi T and Namiki S 2011 Photon. Technol. Lett. 23 546
[17] Boggio J, Moro S, Alic N, Radic S, Karlsson M and Bland-Hawthorn J 2009 Proceedings of the 35th European Conference on Optical Communication, September, 2009, Vienna, Austria, p. 9.1.2
[18] Agrawal G 2007 Nonlinear fiber optics, 4th edn. (Boston: Academic Press)
[19] Hart D, Judy A and Roy R 1998 Phys. Rev. E 57 4757
[1] Dual-channel fiber-optic surface plasmon resonance sensor with cascaded coaxial dual-waveguide D-type structure and microsphere structure
Ling-Ling Li(李玲玲), Yong Wei(魏勇), Chun-Lan Liu(刘春兰), Zhuo Ren(任卓), Ai Zhou(周爱), Zhi-Hai Liu(刘志海), and Yu Zhang(张羽). Chin. Phys. B, 2023, 32(2): 020702.
[2] Optoelectronic oscillator-based interrogation system for Michelson interferometric sensors
Ling Liu(刘玲), Xiaoyan Wu(吴小龑), Guodong Liu(刘国栋), Tigang Ning(宁提纲),Jian Xu(许建), and Haidong You(油海东). Chin. Phys. B, 2022, 31(9): 090702.
[3] A radiation-temperature coupling model of the optical fiber attenuation spectrum in the Ge/P co-doped fiber
Yong Li(李勇), Haoshi Zhang(张浩石), Xiaowei Wang(王晓伟), and Jing Jin(金靖). Chin. Phys. B, 2022, 31(7): 074211.
[4] Manipulating vector solitons with super-sech pulse shapes
Yan Zhou(周延), Keyun Zhang(张克赟), Chun Luo(罗纯), Xiaoyan Lin(林晓艳), Meisong Liao(廖梅松), Guoying Zhao(赵国营), and Yongzheng Fang(房永征). Chin. Phys. B, 2022, 31(5): 054203.
[5] Modulated spatial transmission signals in the photonic bandgap
Wenqi Xu(许文琪), Hui Wang(王慧), Daohong Xie(谢道鸿), Junling Che(车俊岭), and Yanpeng Zhang(张彦鹏). Chin. Phys. B, 2022, 31(12): 124209.
[6] Controllable four-wave mixing response in a dual-cavity hybrid optomechanical system
Lei Shang(尚蕾), Bin Chen(陈彬), Li-Li Xing(邢丽丽), Jian-Bin Chen(陈建宾), Hai-Bin Xue(薛海斌), and Kang-Xian Guo(郭康贤). Chin. Phys. B, 2021, 30(5): 054209.
[7] A two-mode squeezed light based on a double-pump phase-matching geometry
Xuan-Jian He(何烜坚), Jun Jia(贾俊), Gao-Feng Jiao(焦高锋), Li-Qing Chen(陈丽清), Chun-Hua Yuan(袁春华), Wei-Ping Zhang(张卫平). Chin. Phys. B, 2020, 29(7): 074207.
[8] Coherent 420 nm laser beam generated by four-wave mixing in Rb vapor with a single continuous-wave laser
Hao Liu(刘浩), Jin-Peng Yuan(元晋鹏), Li-Rong Wang(汪丽蓉), Lian-Tuan Xiao(肖连团), Suo-Tang Jia(贾锁堂). Chin. Phys. B, 2020, 29(4): 043203.
[9] Lax pair and vector semi-rational nonautonomous rogue waves for a coupled time-dependent coefficient fourth-order nonlinear Schrödinger system in an inhomogeneous optical fiber
Zhong Du(杜仲), Bo Tian(田播), Qi-Xing Qu(屈启兴), Xue-Hui Zhao(赵学慧). Chin. Phys. B, 2020, 29(3): 030202.
[10] Sensitivity enhancement of WS2-coated SPR-based optical fiber biosensor for detecting glucose concentration
Yun Cai(蔡云), Wei Li(李卫), Ye Feng(冯烨), Jian-Sheng Zhao(赵建胜), Gang Bai(白刚), Jie Xu(许杰), and Jin-Ze Li(李金泽)$. Chin. Phys. B, 2020, 29(11): 110701.
[11] Multi-functional optical fiber sensor system based ona dense wavelength division multiplexer
Yue-Xin Yin(尹悦鑫), Zhifa Wu(吴志发), Siwen Sun(孙思文), Liang Tian(田亮), Xibin Wang(王希斌), Yuanda Wu(吴远大), Daming Zhang(张大明). Chin. Phys. B, 2019, 28(7): 074202.
[12] Hollow and filled fiber bragg gratings in nano-bore optical fibers
Yong-Xin Zhang(张永欣), Sheng Liang(梁生), Qian-Qing Yu(余倩卿), Zheng-Gang Lian(廉正刚), Zi-Nian Dong(董梓年), Xuan Wang(王旋), Yu-Qin Lin(林裕勤), Yu-Qi Zou(邹郁祁), Kun Xing(邢坤), Liu-Yan Liang(梁柳雁), Xiao-Ting Zhao(赵小艇), Li-Jing Tu(涂立静). Chin. Phys. B, 2019, 28(7): 074210.
[13] Simultaneous polarization separation and switching for 100-Gbps DP-QPSK signals in backbone networks
Yu-Long Su(苏玉龙), Huan Feng(冯欢), Hui Hu(胡辉), Wei Wang(汪伟), Tao Duan(段弢), Yi-Shan Wang(王屹山), Jin-Hai Si(司金海), Xiao-Ping Xie(谢小平), He-Ning Yang(杨合宁), Xin-Ning Huang(黄新宁). Chin. Phys. B, 2019, 28(2): 024216.
[14] Highly sensitive optical fiber temperature sensor based on resonance in sidewall of liquid-filled silica capillary tube
Min Li(李敏), Biao Feng(冯彪), Jiwen Yin(尹辑文). Chin. Phys. B, 2019, 28(11): 114201.
[15] Electro-optomechanical switch via tunable bistability and four-wave mixing
Kamran Ullah. Chin. Phys. B, 2019, 28(11): 114209.
No Suggested Reading articles found!