Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(9): 097101    DOI: 10.1088/1674-1056/23/9/097101
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Characterization of deep acceptor level in as-grown ZnO thin film by molecular beam epitaxy

M. Asghara, K. Mahmooda, M. A. Hasanb, I. T. Fergusonb, R. Tsub, M. Willderc
a Department of Physics, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan;
b Department of Electrical and Computer Engineering, University of North Carolina Charlotte, NC 28223, USA;
c Department of Science and Technology, Linköping University Norrköping, Sweden
Abstract  We report deep level transient spectroscopy results from ZnO layers grown on silicon by molecular beam epitaxy (MBE). The hot probe measurements reveal mixed conductivity in the as-grown ZnO layers, and the current-voltage (I-V) measurements demonstrate a good quality p-type Schottky device. A new deep acceptor level is observed in the ZnO layer having activation energy of 0.49± 0.03 eV and capture cross-section of 8.57×10-18 cm2. Based on the results from Raman spectroscopy, photoluminescence, and secondary ion mass spectroscopy (SIMS) of the ZnO layer, the observed acceptor trap level is tentatively attributed to a nitrogen-zinc vacancy complex in ZnO.
Keywords:  ZnO      secondary ion mass spectroscopy      photoluminescence      Raman spectroscopy  
Received:  21 January 2014      Revised:  23 February 2014      Accepted manuscript online: 
PACS:  71.20.Nr (Semiconductor compounds)  
  71.55.Gs (II-VI semiconductors)  
  73.20.Hb (Impurity and defect levels; energy states of adsorbed species)  
  73.30.+y (Surface double layers, Schottky barriers, and work functions)  
Fund: Project supported by Fulbright-USA and UNC-Charlotte.
Corresponding Authors:  M. Asghar     E-mail:  mhashmi@iub.edu.pk

Cite this article: 

M. Asghar, K. Mahmood, M. A. Hasan, I. T. Ferguson, R. Tsu, M. Willder Characterization of deep acceptor level in as-grown ZnO thin film by molecular beam epitaxy 2014 Chin. Phys. B 23 097101

[1] Qiang M, Teguh Endah S, Akihisa O and Masaaki N 2011 Appl. Phys. Lett. 98 051908
[2] Muhammad A, Khalid M, Ian F, Yasin A Raja, Ya-Hong X, Raphale T and M-Ali H 2013 Semicond. Sci. Technol. 28 105019
[3] Wang L M, Chiam S Y, Huang J Q, Wang S J, Pan J S and Chim W K 2011 Appl. Phys. Lett. 98 022106
[4] Sang Wuk L, Hak Dong C, Gennady P and Won T 2011 Appl. Phys. Lett. 98 093110
[5] Sushant G, Purushottam K, Arul C A, Doina C and Singh R K 2011 Appl. Surf. Sci. 257 5837
[6] Ying C and Fabien B 2010 Appl. Phys. Lett. 97 042108
[7] Dongqi Y, Lizhong H, Shuangshuang Q, Heqiu Z, Song-En Andy L, Len L K, Qiang F, Xi C and Kaitong S 2009 J. Phys. D: Appl. Phys. 42 055110
[8] Pan X H, Jiang J, Zeng Y J, He H P, Zhu L P, Ye Z Z, Zhao B H and Pan X Q 2008 J. Appl. Phys. 103 023708
[9] Qin J M, Yao B, Yan Y, Zhang J Y, Jia X P, Zhang Z Z, Li B H, Shan C X and Shen D Z 2009 Appl. Phys. Lett. 95 022101
[10] Lyons J L, Anderson J and Cress V W 2009 Appl. Phys. Lett. 95 252105
[11] Tarun M C, Zafar I and McCluskey M D 2011 AIP Advances 1 022105
[12] Park C H, Zhang S B and Wei S H 2002 Phys. Rev. B 66 073202
[13] Jiangbo L, Su-Huai W, Su-Shen L and Jian-Bi X 2006 Phys. Rev. B 74 081201
[14] Lei L, Jilian X, Dandan W, Mingming J, Shuangpeng W, Binghui L, Zhenzhong Z, Dongxu Z, Chong-Xin S, Bin Y and Shen D Z 2012 Phys. Rev. Lett. 108 215501
[15] Reynolds J G, Reynolds C L, Mohanta Jr. A, Muth J F, Rowe J E, Everitt H O and Aspnes D E 2013 Appl. Phys. Lett. 102 152114
[16] Reshchikov M A, Xie J Q, Hertog B and Osinsky A 2008 J. Appl. Phys. 103 103514
[17] Pierre M, Dimitri T, Christian M and Jean-Michel C 2012 Appl. Phys. Lett. 101 122104
[18] Sadia F, Hadia N, Muhammad A, Willander M and Qamur W 2009 Adv. Mater. Research 79-82 1317
[19] Aydogan S, Cinar K, Asıl C H, Kun C C and Türüt A 2009 J. Alloy. Comp. 476 913
[20] Auret F D, Goodman S A, Hayes M, Legodi M J, Van Laarhoven H A and Look D C 2001 Appl. Phys. Lett. 79 3074
[21] Lang D V 1974 J. Appl. Phys. 45 3014
[22] Fumiyasu O, Minseok C, Atsushi T and Isao T 2011 Sci. Technol. Adv. Mater. 12 034302
[23] Soumen D and Giri P K 2012 Thin Solid Films 520 5000
[24] Kennedy J, Carder D A, Markwitz A and Reeves R J 2010 J. Appl. Phys. 107 103518
[25] Ke Yue W, Qing Qing F, Wei Na W, Chang Z, Wen Juan H, Jin Guang L, Qing Rong L, Yan Mei L, Qi Ping Z and Hang Ming Z 2010 J. Appl. Phys. 108 063530
[26] Felic F, Gluba M A and Nickel N H 2009 Appl. Phys. Lett. 95 141903
[27] Changzheng W, Zhong C, Haiquan H and Dong Z 2009 Physica B 404 4075
[28] Muhammad A, Khalid M, Adnan A, M-Ali H, Yasin A R, Ijaz H and Willander M 2011 ECS Trans. 35 149
[1] Polarization Raman spectra of graphene nanoribbons
Wangwei Xu(许望伟), Shijie Sun(孙诗杰), Muzi Yang(杨慕紫), Zhenliang Hao(郝振亮), Lei Gao(高蕾), Jianchen Lu(卢建臣), Jiasen Zhu(朱嘉森), Jian Chen(陈建), and Jinming Cai(蔡金明). Chin. Phys. B, 2023, 32(4): 046803.
[2] Spectral shift of solid high-order harmonics from different channels in a combined laser field
Dong-Dong Cao(曹冬冬), Xue-Fei Pan(潘雪飞), Jun Zhang(张军), and Xue-Shen Liu(刘学深). Chin. Phys. B, 2023, 32(3): 034204.
[3] Thermally enhanced photoluminescence and temperature sensing properties of Sc2W3O12:Eu3+ phosphors
Yu-De Niu(牛毓德), Yu-Zhen Wang(汪玉珍), Kai-Ming Zhu(朱凯明), Wang-Gui Ye(叶王贵), Zhe Feng(冯喆), Hui Liu(柳挥), Xin Yi(易鑫), Yi-Huan Wang(王怡欢), and Xuan-Yi Yuan(袁轩一). Chin. Phys. B, 2023, 32(2): 028703.
[4] Growth behaviors and emission properties of Co-deposited MAPbI3 ultrathin films on MoS2
Siwen You(游思雯), Ziyi Shao(邵子依), Xiao Guo(郭晓), Junjie Jiang(蒋俊杰), Jinxin Liu(刘金鑫), Kai Wang(王凯), Mingjun Li(李明君), Fangping Ouyang(欧阳方平), Chuyun Deng(邓楚芸), Fei Song(宋飞), Jiatao Sun(孙家涛), and Han Huang(黄寒). Chin. Phys. B, 2023, 32(1): 017901.
[5] High-quality CdS quantum dots sensitized ZnO nanotube array films for superior photoelectrochemical performance
Qian-Qian Gong(宫倩倩), Yun-Long Zhao(赵云龙), Qi Zhang(张奇), Chun-Yong Hu(胡春永), Teng-Fei Liu(刘腾飞), Hai-Feng Zhang(张海峰), Guang-Chao Yin(尹广超), and Mei-Ling Sun(孙美玲). Chin. Phys. B, 2022, 31(9): 098103.
[6] In situ study of calcite-III dimorphism using dynamic diamond anvil cell
Xia Zhao(赵霞), Sheng-Hua Mei(梅升华), Zhi Zheng(郑直), Yue Gao(高悦), Jiang-Zhi Chen(陈姜智), Yue-Gao Liu(刘月高), Jian-Guo Sun(孙建国), Yan Li(李艳), and Jian-Hui Sun(孙建辉). Chin. Phys. B, 2022, 31(9): 096201.
[7] Radiation effects of electrons on multilayer FePS3 studied with laser plasma accelerator
Meng Peng(彭猛), Jun-Bo Yang(杨俊波), Hao Chen(陈浩), Bo-Yuan Li(李博源), Xu-Lei Ge(葛绪雷), Xiao-Hu Yang(杨晓虎), Guo-Bo Zhang(张国博), and Yan-Yun Ma(马燕云). Chin. Phys. B, 2022, 31(8): 086102.
[8] Enhanced photoluminescence of monolayer MoS2 on stepped gold structure
Yu-Chun Liu(刘玉春), Xin Tan(谭欣), Tian-Ci Shen(沈天赐), and Fu-Xing Gu(谷付星). Chin. Phys. B, 2022, 31(8): 087803.
[9] SERS activity of carbon nanotubes modified by silver nanoparticles with different particle sizes
Xiao-Lei Zhang(张晓蕾), Jie Zhang(张洁), Yuan Luo(罗元), and Jia Ran(冉佳). Chin. Phys. B, 2022, 31(7): 077401.
[10] Structural evolution and bandgap modulation of layered β-GeSe2 single crystal under high pressure
Hengli Xie(谢恒立), Jiaxiang Wang(王家祥), Lingrui Wang(王玲瑞), Yong Yan(闫勇), Juan Guo(郭娟), Qilong Gao(高其龙), Mingju Chao(晁明举), Erjun Liang(梁二军), and Xiao Ren(任霄). Chin. Phys. B, 2022, 31(7): 076101.
[11] Photothermal-chemical synthesis of P-S-H ternary hydride at high pressures
Tingting Ye(叶婷婷), Hong Zeng(曾鸿), Peng Cheng(程鹏), Deyuan Yao(姚德元), Xiaomei Pan(潘孝美), Xiao Zhang(张晓), and Junfeng Ding(丁俊峰). Chin. Phys. B, 2022, 31(6): 067402.
[12] Exploration of structural, optical, and photoluminescent properties of (1-x)NiCo2O4/xPbS nanocomposites for optoelectronic applications
Zein K Heiba, Mohamed Bakr Mohamed, Noura M Farag, and Ali Badawi. Chin. Phys. B, 2022, 31(6): 067801.
[13] Effect of different catalysts and growth temperature on the photoluminescence properties of zinc silicate nanostructures grown via vapor-liquid-solid method
Ghfoor Muhammad, Imran Murtaza, Rehan Abid, and Naeem Ahmad. Chin. Phys. B, 2022, 31(5): 057801.
[14] Raman spectroscopy investigation on the pressure-induced structural and magnetic phase transition in two-dimensional antiferromagnet FePS3
Hong Zeng(曾鸿), Tingting Ye(叶婷婷), Peng Cheng(程鹏), Deyuan Yao(姚德元), and Junfeng Ding(丁俊峰). Chin. Phys. B, 2022, 31(5): 056109.
[15] Exciton luminescence and many-body effect of monolayer WS2 at room temperature
Jian-Min Wu(吴建民), Li-Hui Li(黎立辉), Wei-Hao Zheng(郑玮豪), Bi-Yuan Zheng(郑弼元), Zhe-Yuan Xu(徐哲元), Xue-Hong Zhang(张学红), Chen-Guang Zhu(朱晨光), Kun Wu(吴琨), Chi Zhang(张弛), Ying Jiang(蒋英),Xiao-Li Zhu(朱小莉), and Xiu-Juan Zhuang(庄秀娟). Chin. Phys. B, 2022, 31(5): 057803.
No Suggested Reading articles found!