Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(3): 038504    DOI: 10.1088/1674-1056/23/3/038504
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Increased work function in PEDOT:PSS film under ultraviolet irradiation

Xing Ying-Jie (邢英杰), Qian Min-Fang (钱旻昉), Guo Deng-Zhu (郭等柱), Zhang Geng-Min (张耿民)
Key Laboratory for the Physics and Chemistry of Nanodevices and Department of Electronics, Peking University, Beijing 100871, China
Abstract  An increase of work function (0.3 eV) is achieved by irradiating poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) film in vacuum with 254-nm ultraviolet (UV) light. The mechanism for such an improvement is investigated by photoelectron yield spectroscopy, X-ray photo electron energy spectrum, and field emission technique. Surface oxidation and composition change are found as the reasons for work function increase. The UV-treated PEDOT:PSS film is used as the hole injection layer in a hole-only device. Hole injection is improved by UV-treated PEDOT:PSS film without baring the enlargement of film resistance. Our result demonstrates that UV treatment is more suitable for modifying the injection barrier than UV ozone exposure.
Keywords:  poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) film      work function      ultraviolet      hole injection layer  
Received:  22 July 2013      Revised:  29 October 2013      Accepted manuscript online: 
PACS:  85.30.Hi (Surface barrier, boundary, and point contact devices)  
  81.65.Cf (Surface cleaning, etching, patterning)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61076057, 61376059, 61171023, and 91221202,) and the National Basic Research Program of China (Grant Nos. 2012CB932701 and 2011CB933001).
Corresponding Authors:  Xing Ying-Jie     E-mail:  xingyj@pku.edu.cn

Cite this article: 

Xing Ying-Jie (邢英杰), Qian Min-Fang (钱旻昉), Guo Deng-Zhu (郭等柱), Zhang Geng-Min (张耿民) Increased work function in PEDOT:PSS film under ultraviolet irradiation 2014 Chin. Phys. B 23 038504

[1] Po R, Carbonera C, Bernardi A, Tinti F and Camaioni N 2012 Sol. Energy Mater. Sol. Cells 100 97
[2] Feng Z H, Hou Y B, Shi Q M, Qin L F, Li Y, Zhang L, Liu X J, Teng F, Wang Y S and Xia R D 2010 Chin. Phys. B 19 038601
[3] Koch N, Vollmer A and Elschner A 2007 Appl. Phys. Lett. 90 043512
[4] Hwang J, Amy F and Kahn A 2006 Org. Electron. 7 387
[5] Lee T W and Chung Y 2008 Adv. Funct. Mater. 18 2246
[6] Na S I, Wang G, Kim S S, Kim T W, Oh S H, Yu B K, Lee T and Kim D Y 2009 J. Mater. Chem. 19 9045
[7] Nardes A M, Kemerink M, de Kok M M, Vinken E, Maturova K and Janssen R A J 2008 Org. Electron. 9 727
[8] Lin Y J, Yang F M, Huang C Y, Chou W Y, Chang J and Lien Y C 2007 Appl. Phys. Lett. 91 092127
[9] Nagata T, Oh S, Chikyow T and Wakayama Y 2011 Org. Electron. 12 279
[10] Helander M G, Wang Z B, Greiner M T, Liu Z W, Lian K and Lu Z H 2009 Appl. Phys. Lett. 95 173302
[11] Modinos A 1984 Field, Thermionic, and Secondary Electron Emission Spectroscopy (New York: Plenum Press) p. 13
[12] Bai X and Zhang G M 2006 Appl. Phys. Lett. 88 226101
[13] Lee H K, Kim J K and Park O O 2009 Org. Electron. 10 1641
[14] Rice R G 1982 Handbook of Ozone Technology and Applications (Ann Arbor: Science)
[15] Hong K, Kim S H, Yang C, Yun W M, Nam S, Jang J, Park C and Park C E 2011 ACS Appl. Mater. Interfaces 3 74
[16] Benor A, Takizawa S, Perez-Bolivar C and Anzenbacher P 2010 Org. Electron. 11 938
[17] Benor A, Takizawa S, Chen P, Perez-Bolivar C and Anzenbacher P 2009 Appl. Phys. Lett. 94 193301
[18] Helander M G, Wang Z B, Greiner M T, Liu Z W, Lian K and Lu Z H 2009 Appl. Phys. Lett. 95 173302
[19] Helander M G, Wang Z B, Greiner M T, Qiu J and Lu Z H 2009 Rev. Sci. Instrum. 80 033901
[20] Wang Z B, Helander M G, Greiner M T, Qiu J and Lu Z H 2010 J. Appl. Phys. 107 034506
[1] Analysis of high-temperature performance of 4H-SiC avalanche photodiodes in both linear and Geiger modes
Xing-Ye Zhou(周幸叶), Yuan-Jie Lv(吕元杰), Hong-Yu Guo(郭红雨), Guo-Dong Gu(顾国栋), Yuan-Gang Wang(王元刚), Shi-Xiong Liang(梁士雄), Ai-Min Bu(卜爱民), and Zhi-Hong Feng(冯志红). Chin. Phys. B, 2023, 32(3): 038502.
[2] Design optimization of broadband extreme ultraviolet polarizer in high-dimensional objective space
Shang-Qi Kuang(匡尚奇), Bo-Chao Li(李博超), Yi Wang(王依), Xue-Peng Gong(龚学鹏), and Jing-Quan Lin(林景全). Chin. Phys. B, 2022, 31(7): 077802.
[3] Electron emission induced by keV protons from tungsten surface at different temperatures
Li-Xia Zeng(曾利霞), Xian-Ming Zhou(周贤明), Rui Cheng(程锐), Yu Liu(柳钰), Xiao-An Zhang(张小安), and Zhong-Feng Xu(徐忠锋). Chin. Phys. B, 2022, 31(7): 073202.
[4] The 266-nm ultraviolet-beam generation of all-fiberized super-large-mode-area narrow-linewidth nanosecond amplifier with tunable pulse width and repetition rate
Shun Li(李舜), Ping-Xue Li(李平雪), Min Yang(杨敏), Ke-Xin Yu(于可新), Yun-Chen Zhu(朱云晨), Xue-Yan Dong(董雪岩), and Chuan-Fei Yao(姚传飞). Chin. Phys. B, 2022, 31(3): 034207.
[5] Sensitivity improvement of aluminum-based far-ultraviolet nearly guided-wave surface plasmon resonance sensor
Tianqi Li(李天琦), Shujing Chen(陈淑静), and Chengyou Lin(林承友). Chin. Phys. B, 2022, 31(12): 124208.
[6] Photoreflectance system based on vacuum ultraviolet laser at 177.3 nm
Wei-Xia Luo(罗伟霞), Xue-Lu Liu(刘雪璐), Xiang-Dong Luo(罗向东), Feng Yang(杨峰), Shen-Jin Zhang(张申金), Qin-Jun Peng(彭钦军), Zu-Yan Xu(许祖彦), and Ping-Heng Tan(谭平恒). Chin. Phys. B, 2022, 31(11): 110701.
[7] Yield enhancement of elliptical high harmonics driven by bicircular laser pulses
Xiaofan Zhang(张晓凡) and Xiaosong Zhu(祝晓松). Chin. Phys. B, 2022, 31(11): 114209.
[8] Micro-pinch formation and extreme ultraviolet emission of laser-induced discharge plasma
Jun-Wu Wang(王均武), Xin-Bing Wang(王新兵), Du-Luo Zuo(左都罗), and Vassily S. Zakharov. Chin. Phys. B, 2021, 30(9): 095207.
[9] Effect of surface oxygen vacancy defects on the performance of ZnO quantum dots ultraviolet photodetector
Hongyu Ma(马宏宇), Kewei Liu(刘可为), Zhen Cheng(程祯), Zhiyao Zheng(郑智遥), Yinzhe Liu(刘寅哲), Peixuan Zhang(张培宣), Xing Chen(陈星), Deming Liu(刘德明), Lei Liu(刘雷), and Dezhen Shen(申德振). Chin. Phys. B, 2021, 30(8): 087303.
[10] Deep-ultraviolet and visible dual-band photodetectors by integrating Chlorin e6 with Ga2O3
Yue Zhao(赵越), Jin-Hao Zang(臧金浩), Xun Yang(杨珣), Xue-Xia Chen(陈雪霞), Yan-Cheng Chen(陈彦成), Kai-Yong Li(李凯永), Lin Dong(董林), and Chong-Xin Shan(单崇新). Chin. Phys. B, 2021, 30(7): 078504.
[11] Dual-wavelength ultraviolet photodetector based on vertical (Al,Ga)N nanowires and graphene
Min Zhou(周敏), Yukun Zhao(赵宇坤), Lifeng Bian(边历峰), Jianya Zhang(张建亚), Wenxian Yang(杨文献), Yuanyuan Wu(吴渊渊), Zhiwei Xing(邢志伟), Min Jiang(蒋敏), and Shulong Lu(陆书龙). Chin. Phys. B, 2021, 30(7): 078506.
[12] Investigation of electronic, elastic, and optical properties of topological electride Ca3Pb via first-principles calculations
Chang Sun(孙畅), Xin-Yu Cao(曹新宇), Xi-Hui Wang(王西惠), Xiao-Le Qiu(邱潇乐), Zheng-Hui Fang(方铮辉), Yu-Jie Yuan(袁宇杰), Kai Liu(刘凯), and Xiao Zhang(张晓). Chin. Phys. B, 2021, 30(5): 057104.
[13] Graphene/SrTiO3 interface-based UV photodetectors with high responsivity
Heng Yue(岳恒), Anqi Hu(胡安琪), Qiaoli Liu(刘巧莉), Huijun Tian(田慧军), Chengri Hu(胡成日), Xiansong Ren(任显松), Nianyu Chen(陈年域), Chen Ge(葛琛), Kuijuan Jin(金奎娟), and Xia Guo(郭霞). Chin. Phys. B, 2021, 30(3): 038502.
[14] Photoluminescence in wide band gap corundum Mg4Ta2O9 single crystals
Liang Li(李亮), Yu-Lu Zheng(郑雨露), Yu-Xin Hu(胡雨馨), Fang-Fei Li(李芳菲), Qiang Zhou(周强), Tian Cui(崔田). Chin. Phys. B, 2020, 29(8): 083301.
[15] High-performance frequency stabilization of ultraviolet diode lasers by using dichroic atomic vapor spectroscopy and transfer cavity
Danna Shen(申丹娜), Liangyu Ding(丁亮宇), Qiuxin Zhang(张球新), Chenhao Zhu(朱晨昊), Yuxin Wang(王玉欣), Wei Zhang(张威), Xiang Zhang(张翔). Chin. Phys. B, 2020, 29(7): 074210.
No Suggested Reading articles found!