Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(12): 127102    DOI: 10.1088/1674-1056/21/12/127102
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Thermodynamics and elastic properties of Ta from first-principles calculations

Li Qiang (李强), Huang Duo-Hui (黄多辉), Cao Qi-Long (曹启龙), Wang Fan-Hou (王藩侯), Cai Ling-Cang (蔡灵仓), Zhang Xiu-Lu (张修路), Jing Fu-Qian (经福谦)
a Computational Physics Key Laboratory of Sichuan Province, Yibin University, Yibin 644000, China;
b Key Laboratory of National Defense Science and Technology for Shock Wave and Detonation Physics and the Science, Mianyang 621900, China
Abstract  Within the framework of the quasiharmonic approximation, the thermodynamics and elastic properties of Ta, including phonon density of states (DOS), equation of state, linear thermal expansion coefficient, entropy, enthalpy, heat capacity, elastic constants, bulk modulus, shear modulus, Young's modulus, microhardness, and sound velocity, are studied using the first-principles projector-augmented wave method. The vibrational contribution to Helmholtz free energy is evaluated from the first-principles phonon DOS and Debye model. The thermal electronic contribution to Helmholtz free energy is estimated from the integration over the electronic DOS. By comparing the experimental results with the calculation results from the first-principles and Debye model, it is found that the thermodynamic properties of Ta are depicted well by the first-principles. The elastic properties of Ta from the first-principles are consistent with the available experimental data.
Keywords:  first-principles      Ta      thermodynamics      Debye model      elastic properties  
Received:  25 February 2012      Revised:  19 June 2012      Accepted manuscript online: 
PACS:  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
  05.70.-a (Thermodynamics)  
  81.40.Jj (Elasticity and anelasticity, stress-strain relations)  
Fund: Project supported by the Foundation of Key Laboratory of National Defense Science and Technology for Shock Wave and Detonation Physics and the Science and Research Foundation of Sichuan Educational Committee, China (Grant No. 09ZC048).
Corresponding Authors:  Wang Fan-Hou     E-mail:  wslypq@126.com

Cite this article: 

Li Qiang (李强), Huang Duo-Hui (黄多辉), Cao Qi-Long (曹启龙), Wang Fan-Hou (王藩侯), Cai Ling-Cang (蔡灵仓), Zhang Xiu-Lu (张修路), Jing Fu-Qian (经福谦) Thermodynamics and elastic properties of Ta from first-principles calculations 2012 Chin. Phys. B 21 127102

[1] Lucas M S, Bourne W C and Sheets A O 2011 Mater. Sci. Eng. B 176 1079
[2] Keith J L, Jeremy T B and Steven J Z 2007 J. Nucl. Mater. 366 353
[3] Zhang W, Arai K and Qin C L 2008 Mater. Sci. Eng. A 485 690
[4] Luo F, Fu M, Ji G F and Chen X R 2010 Chin. Phys. B 19 027101
[5] Yang H, Chang J, Li Z and Chen X R 2009 Chin. Phys. B 18 4443
[6] Yu J X, Fu M, Ji G F and Chen X R 2009 Chin. Phys. B 18 269
[7] Zhu J, Yu J X, Wang Y J, Chen X R and Jing F Q 2008 Chin. Phys. B 17 2216
[8] Wang Y, Liu Z K and Chen L Q 2004 Acta Mater. 52 2665
[9] Liu Z L, Cai L C, Chen X R, Wu Q and Jing F Q 2009 J. Phys.: Condens. Matter 21 095408
[10] Arroyave R and Liu Z K 2006 Phys. Rev. B 74 174118
[11] Mohri T and Chen Y 2004 J. Alloy. Compd. 383 23
[12] Moruzzi V L, Janak J F and Schwarz K 1988 Phys. Rev. B 37 790
[13] Peng F, Fu H Z and Yang X D 2008 Solid State Commun. 145 91
[14] Shang S and Böttger A J 2005 Acta Mater. 53 255
[15] Shang S L, Wang Y and Liu Z K 2007 Phys. Rev. B 75 024302
[16] Arroyave R, Shin D and Liu Z K 2005 Acta Mater. 53 1809
[17] Murnaghan F D 1937 Am. J. Math. 59 235
[18] Blanco M A, Pendas A M and Francisco E J 1996 J. Mol. Struct. (Theochem) 368 245
[19] Blanco M A, Francisco E and Luana V 2004 Comput. Phys. Commun. 158 7
[20] Francisco E, Recio J M, Blanco M A and Martín P A 1998 J. Phys. Chem. 102 1595.
[21] Shang S, Wang Y and Liu Z K 2007 Appl. Phys. Lett. 90 101909
[22] Hill R 1952 Phys. Soc. 65 350
[23] Miao N H, Sa B S, Zhou J and Sun Z M 2011 Comp. Mater. Sci. 50 1559
[24] Zeng Z Y, Hu C E, Cai L C, Chen X R and Jing F Q 2010 J. Phys. Chem. B 114 298
[25] Kresse G and Furthmuller J 1996 Phys. Rev. B 54 11169
[26] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758
[27] Perdew J P, Chevary J A and Vosko S H 1992 Phys. Rev. B 46 6671
[28] Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188
[29] van de Walle A, Asta M and Ceder G 2002 Calphad 26 539
[30] Cynn H and Yoo C S 1999 Phys. Rev. B 59 8526
[31] Dewaele A, Loubeyre P and Mezouar M 2004 Phys. Rev. B 70 094112
[32] Li J H, Liang S H, Guo H B, and Liu B X 2005 Appl. Phys. Lett. 87 194111
[33] David R Lide 2004 CRC Handbook of Chemistry and Physics 90th edn. (New York: CRC Press LLC) p. 787
[34] Gale W F and Totemeier T C 2004 Smithells Metals Reference Book 8th edn. (Oxford: Elsevier Butterworth-Heinemann) p. 15-3
[35] WooDs ADB 1964 Phys. Rev. 136 781
[36] Featherstone F H and Neighbors J R 1963 Phys. Rev. 130 1324
[37] Dwight E Gray 1957 American Institute of Physics Handbook 90th edn. (New York: American Institute of Physics) pp. 4-131
[38] Wu J H, Zhao X L, Song Y L and Wu G D 2011 Int. J. Mod. Phys. B 25 1393
[39] Cohen R E and Gülseren O 2001 Phys. Rev. B 63 224101
[40] Barin I 1995 Thermochemical Data of Pure Substances 3rd edn. (Germany: Verlagsgesellschaft bmH Weinheim) p. 1587
[41] Featherston F H and Neighbours J R 1963 Phys. Rev. 130 1324
[42] Walker E and Bujard P 1980 Solid State Commun. 34 691
[43] Wang Y, Wang J J, Zhang H, Manga V R, Shang S L, Chen L Q and Liu Z K 2010 J. Phys.: Condens. Matter. 22 225404
[44] Zhang M, Yang B, Chu J and Nieh T G 2006 Scripta Mater. 54 1227
[45] Kaye G W C and Laby T H Tables of Physical & Chemical Constants Barometryhttp://www.kayelaby.npl.co.uk/general_physics/24/24_1. html [2012-]
[1] Effective dynamics and quantum state engineering by periodic kicks
Zhi-Cheng Shi(施志成), Zhen Chen(陈阵), Jian-Hui Wang(王建辉), Yan Xia(夏岩), and X X Yi(衣学喜). Chin. Phys. B, 2023, 32(4): 044210.
[2] Recent progress on the planar Hall effect in quantum materials
Jingyuan Zhong(钟景元), Jincheng Zhuang(庄金呈), and Yi Du(杜轶). Chin. Phys. B, 2023, 32(4): 047203.
[3] Strong spin frustration and magnetism in kagomé antiferromagnets LnCu3(OH)6Br3 (Ln = Nd, Sm, and Eu)
Jin-Qun Zhong(钟金群), Zhen-Wei Yu(余振伟), Xiao-Yu Yue(岳小宇), Yi-Yan Wang(王义炎), Hui Liang(梁慧), Yan Sun(孙燕), Dan-Dan Wu(吴丹丹), Zong-Ling Ding(丁宗玲), Jin Sun(孙进), Xue-Feng Sun(孙学峰), and Qiu-Ju Li(李秋菊). Chin. Phys. B, 2023, 32(4): 047505.
[4] SiC gate-controlled bipolar field effect composite transistor with polysilicon region for improving on-state current
Baoxing Duan(段宝兴), Kaishun Luo(罗开顺), and Yintang Yang(杨银堂). Chin. Phys. B, 2023, 32(4): 047702.
[5] First-principles study of the bandgap renormalization and optical property of β-LiGaO2
Dangqi Fang(方党旗). Chin. Phys. B, 2023, 32(4): 047101.
[6] Riemann--Hilbert approach of the complex Sharma—Tasso—Olver equation and its N-soliton solutions
Sha Li(李莎), Tiecheng Xia(夏铁成), and Hanyu Wei(魏含玉). Chin. Phys. B, 2023, 32(4): 040203.
[7] An optimized infinite time-evolving block decimation algorithm for lattice systems
Junjun Xu(许军军). Chin. Phys. B, 2023, 32(4): 040303.
[8] Nonreciprocal wide-angle bidirectional absorber based on one-dimensional magnetized gyromagnetic photonic crystals
You-Ming Liu(刘又铭), Yuan-Kun Shi(史源坤), Ban-Fei Wan(万宝飞), Dan Zhang(张丹), and Hai-Feng Zhang(章海锋). Chin. Phys. B, 2023, 32(4): 044203.
[9] Light manipulation by dual channel storage in ultra-cold Rydberg medium
Xue-Dong Tian(田雪冬), Zi-Jiao Jing(景梓骄), Feng-Zhen Lv(吕凤珍), Qian-Qian Bao(鲍倩倩), and Yi-Mou Liu(刘一谋). Chin. Phys. B, 2023, 32(4): 044205.
[10] Diffraction deep neural network based orbital angular momentum mode recognition scheme in oceanic turbulence
Hai-Chao Zhan(詹海潮), Bing Chen(陈兵), Yi-Xiang Peng(彭怡翔), Le Wang(王乐), Wen-Nai Wang(王文鼐), and Sheng-Mei Zhao(赵生妹). Chin. Phys. B, 2023, 32(4): 044208.
[11] Strain compensated type II superlattices grown by molecular beam epitaxy
Chao Ning(宁超), Tian Yu(于天), Rui-Xuan Sun(孙瑞轩), Shu-Man Liu(刘舒曼), Xiao-Ling Ye(叶小玲), Ning Zhuo(卓宁), Li-Jun Wang(王利军), Jun-Qi Liu(刘俊岐), Jin-Chuan Zhang(张锦川), Shen-Qiang Zhai(翟慎强), and Feng-Qi Liu(刘峰奇). Chin. Phys. B, 2023, 32(4): 046802.
[12] Tailoring of thermal expansion and phase transition temperature of ZrW2O8 with phosphorus and enhancement of negative thermal expansion of ZrW1.5P0.5O7.75
Chenjun Zhang(张晨骏), Xiaoke He(何小可), Zhiyu Min(闵志宇), and Baozhong Li(李保忠). Chin. Phys. B, 2023, 32(4): 048201.
[13] Dynamic electrostatic-discharge path investigation relied on different impact energies in metal-oxide-semiconductor circuits
Tian-Tian Xie(谢田田), Jun Wang(王俊), Fei-Bo Du(杜飞波), Yang Yu(郁扬), Yan-Fei Cai(蔡燕飞), Er-Yuan Feng(冯二媛), Fei Hou(侯飞), and Zhi-Wei Liu(刘志伟). Chin. Phys. B, 2023, 32(4): 048501.
[14] A simple semiempirical model for the static polarizability of electronically excited atoms and molecules
Alexander S Sharipov, Alexey V Pelevkin, and Boris I Loukhovitski. Chin. Phys. B, 2023, 32(4): 043301.
[15] Guide and control of thermal conduction with isotropic thermodynamic parameters based on a rotary-concentrating device
Mao Liu(刘帽)†, Quan Yan(严泉). Chin. Phys. B, 2023, 32(4): 044402.
No Suggested Reading articles found!