Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(8): 080302    DOI: 10.1088/1674-1056/21/8/080302
GENERAL Prev   Next  

New approach for obtaining the time-evolution law of chaotic light field in damping–gaining process

Gong Li-Hua (龚黎华)a, Zhou Nan-Run (周南润)a, Hu Li-Yun (胡利云)b, Fan Hong-Yi (范洪义 )c
a Department of Electronic Information Engineering, Nanchang University, Nanchang 330031, China;
b Department of Physics, Jiangxi Normal University, Nanchang 330022, China;
c Department of Physics, Shanghai Jiao Tong University, Shanghai 200030, China
Abstract  A new approach for studying the time-evolution law of chaotic light field in damping-gaining coexisting process is presented. The new differential equation for determining the parameter of the density operator ρ(t) is derived and the solution of f′ for damping and gaining processes are studied separately. Our approach is direct and the result is concise since it is not necessarily for us to know the Kraus operators in advance.
Keywords:  chaotic light field      damping-gaining process      time evolution law      quantum communication  
Received:  07 January 2012      Revised:  29 February 2012      Accepted manuscript online: 
PACS:  03.65.-w (Quantum mechanics)  
  42.50.-p (Quantum optics)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61141007, 11047133, and 11175113), the Natural Science Foundation of Jiangxi Province of China (Grant Nos. 2010GQS0080 and 2010GQW0027), the Research Foundation of the Education Department of Jiangxi Province of China (Grant No. GJJ11339), and the Sponsored Program for Cultivating Youths of Outstanding Ability in Jiangxi Normal University.
Corresponding Authors:  Zhou Nan-Run     E-mail:  znr21@163.com

Cite this article: 

Gong Li-Hua (龚黎华), Zhou Nan-Run (周南润), Hu Li-Yun (胡利云), Fan Hong-Yi (范洪义 ) New approach for obtaining the time-evolution law of chaotic light field in damping–gaining process 2012 Chin. Phys. B 21 080302

[1] Louisell W H 1973 Quantum Statistical Properties of Radiation (New York: John-Wiley)
[2] Zhou N R, Hu L Y and Fan H Y 2011 Chin. Phys. B 20 120301
[3] Gardiner C W and Zoller P 2000 Quantum Noise 2nd edn. (Berlin: Springer-Verlag)
[4] Fan H Y and Hu L Y 2008 Mod. Phys. Lett. B 22 2435
[5] Fan H Y and Hu L Y 2009 Commun. Theor. Phys. 51 729
[6] Jiang N Q, Fan H Y and Hu L Y 2011 J. Phys. A: Math. Theor. 44 195302
[1] Purification in entanglement distribution with deep quantum neural network
Jin Xu(徐瑾), Xiaoguang Chen(陈晓光), Rong Zhang(张蓉), and Hanwei Xiao(肖晗微). Chin. Phys. B, 2022, 31(8): 080304.
[2] Self-error-rejecting multipartite entanglement purification for electron systems assisted by quantum-dot spins in optical microcavities
Yong-Ting Liu(刘永婷), Yi-Ming Wu(吴一鸣), and Fang-Fang Du(杜芳芳). Chin. Phys. B, 2022, 31(5): 050303.
[3] Channel parameters-independent multi-hop nondestructive teleportation
Hua-Yang Li(李华阳), Yu-Zhen Wei(魏玉震), Yi Ding(丁祎), and Min Jiang(姜敏). Chin. Phys. B, 2022, 31(2): 020302.
[4] Time evolution law of a two-mode squeezed light field passing through twin diffusion channels
Hai-Jun Yu(余海军) and Hong-Yi Fan(范洪义). Chin. Phys. B, 2022, 31(2): 020301.
[5] Analysis of atmospheric effects on the continuous variable quantum key distribution
Tao Liu(刘涛), Shuo Zhao(赵硕), Ivan B. Djordjevic, Shuyu Liu(刘舒宇), Sijia Wang(王思佳), Tong Wu(吴彤), Bin Li(李斌), Pingping Wang(王平平), and Rongxiang Zhang(张荣香). Chin. Phys. B, 2022, 31(11): 110303.
[6] Improving the purity of heralded single-photon sources through spontaneous parametric down-conversion process
Jing Wang(王静), Chun-Hui Zhang(张春辉), Jing-Yang Liu(刘靖阳), Xue-Rui Qian(钱雪瑞), Jian Li(李剑), and Qin Wang(王琴). Chin. Phys. B, 2021, 30(7): 070304.
[7] Practical decoy-state BB84 quantum key distribution with quantum memory
Xian-Ke Li(李咸柯), Xiao-Qian Song(宋小谦), Qi-Wei Guo(郭其伟), Xing-Yu Zhou(周星宇), and Qin Wang(王琴). Chin. Phys. B, 2021, 30(6): 060305.
[8] Deterministic nondestructive state analysis for polarization-spatial-time-bin hyperentanglement with cross-Kerr nonlinearity
Hui-Rong Zhang(张辉荣), Peng Wang(王鹏), Chang-Qi Yu(于长琦), and Bao-Cang Ren(任宝藏). Chin. Phys. B, 2021, 30(3): 030304.
[9] Hierarchical simultaneous entanglement swapping for multi-hop quantum communication based on multi-particle entangled states
Guang Yang(杨光, Lei Xing(邢磊), Min Nie(聂敏), Yuan-Hua Liu(刘原华), and Mei-Ling Zhang(张美玲). Chin. Phys. B, 2021, 30(3): 030301.
[10] New semi-quantum key agreement protocol based on high-dimensional single-particle states
Huan-Huan Li(李欢欢), Li-Hua Gong(龚黎华), and Nan-Run Zhou(周南润). Chin. Phys. B, 2020, 29(11): 110304.
[11] Heralded entanglement purification protocol using high-fidelity parity-check gate based on nitrogen-vacancy center in optical cavity
Lu-Cong Lu(陆路聪), Guan-Yu Wang(王冠玉), Bao-Cang Ren(任宝藏), Mei Zhang(章梅), Fu-Guo Deng(邓富国). Chin. Phys. B, 2020, 29(1): 010305.
[12] Deterministic hierarchical joint remote state preparation with six-particle partially entangled state
Na Chen(陈娜), Bin Yan(颜斌), Geng Chen(陈赓), Man-Jun Zhang(张曼君), Chang-Xing Pei(裴昌幸). Chin. Phys. B, 2018, 27(9): 090304.
[13] Quantum photonic network on chip
Qun-Yong Zhang(张群永), Ping Xu(徐平), Shi-Ning Zhu(祝世宁). Chin. Phys. B, 2018, 27(5): 054207.
[14] Cancelable remote quantum fingerprint templates protection scheme
Qin Liao(廖骎), Ying Guo(郭迎), Duan Huang(黄端). Chin. Phys. B, 2017, 26(9): 090302.
[15] Multi-copy entanglement purification with practical spontaneous parametric down conversion sources
Shuai-Shuai Zhang(张帅帅), Qi Shu(祁舒), Lan Zhou(周澜), Yu-Bo Sheng(盛宇波). Chin. Phys. B, 2017, 26(6): 060307.
No Suggested Reading articles found!