Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(8): 080301    DOI: 10.1088/1674-1056/21/8/080301
GENERAL Prev   Next  

Quantum election scheme based on anonymous quantum key distribution

Zhou Rui-Rui (周瑞瑞)a b, Yang Li (杨理)a
a State Key Laboratory of Information Security, Institute of Information Engineering, Chinese Academy of Sciences, Beijing 100093, China;
b Graduate University of Chinese Academy of Sciences, Beijing 100049, China
Abstract  An unconditionally secure authority-certified anonymous quantum key distribution scheme using conjugate coding is presented, based on which we construct a quantum election scheme without the help of entanglement state. We show that this election scheme ensures the completeness, soundness, privacy, eligibility, unreusability, fairness, and verifiability of a large-scale election in which the administrator and counter are semi-honest. This election scheme can work even if there exist loss and errors in quantum channels. In addition, any irregularity in this scheme is sensible.
Keywords:  quantum election      quantum key distribution      conjugate coding  
Received:  07 January 2012      Revised:  22 March 2012      Accepted manuscript online: 
PACS:  03.65.-w (Quantum mechanics)  
  03.67.-a (Quantum information)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 61173157) and the Strategy Pilot Project of Chinese Academy of Sciences (Grant No. XDA06010702).
Corresponding Authors:  Yang Li     E-mail:  yangli@gucas.ac.cn

Cite this article: 

Zhou Rui-Rui (周瑞瑞), Yang Li (杨理) Quantum election scheme based on anonymous quantum key distribution 2012 Chin. Phys. B 21 080301

[1] Marius I and Ionut P 2011 Computer Science Master Research 1 67
[2] Chaum D 1981 Commun. ACM 24 84
[3] Chaum D 1988 Advances in Cryptology-Eurocrypt 1988 (Berlin: Springer-Verlag) p. 177
[4] Chaum D 1988 J. Cryptology 1 65
[5] Fujioka A, Okamoto T and Ohta K 1993 Lecture Notes in Computer Science 718 244
[6] Salomaa A 1996 Public-Key Cryptography 2nd edn. (Berlin: Springer-Verlag) pp. 200-202
[7] Sako K and Killian J 1995 Advances in Cryptology-Crypto (Berlin: Springer-Verlag) p. 411
[8] Cranor L F and Cytron R K 1996 Washington University Computer Science Technical Report
[9] Ibrahim S, Kamat M, Salleh M and Aziz S R A 2003 Proceedings of the 4-th National Conference on Telecommunication Technology p. 193
[10] Jafari S, Karimpour J and Bagheri N 2011 Int. J. Comput. Sci. Eng. 3 2191
[11] Kumar S and Walia E 2011 Int. J. Comput. Sci. Eng. 3 1825
[12] Boykin P O and Roychowdhury V 2003 Phys. Rev. A 67 042317
[13] Chen K and Lo H K 2005 arXiv: 0404133 [quant-ph]
[14] Deng F G, Li X H, Zhou H Y and Zhang Z J 2005 Phys. Rev. A 72 044302
[15] Wang T Y and Wen Q Y 2010 Chin. Phys. B 19 060307
[16] Gisin N, Ribordy G, Tittel W and Zbinden H 2002 Rev. Mod. Phys. 74 145
[17] Zhou Y Y and Zhou X J 2011 Acta Phys. Sin. 60 100301 (in Chinese)
[18] Jiao R Z, Zhang C and Ma H Q 2011 Acta Phys. Sin. 60 110303 (in Chinese)
[19] Christandl M and Wehner S 2005 Advances in Cryptology-Asiacrypt 3788 217
[20] Vaccaro J A, Spring J and Chefles A 2007 Phys. Rev. A 75 012333
[21] Dolev S, Pitowsky I and Tamir B 2006 arXiv: 0602087 [quant-ph]
[22] Hillery M, Ziman M, Buzek V and Bielikov M 2006 Phys. Lett. A 349 75
[23] Bonanome M, Buzek V, Hillery M and Ziman M 2011 Phys. Rev. A 84 022331
[24] Horoshko D and Kilin S 2011 Phys. Lett. A 375 1172
[25] Li Y and Zeng G 2009 Chin. Opt. Lett. 7 152
[26] Okamoto T, Suzuki K and Tokunaga Y 2008 NTT Thchnical Review 6
[27] Li Y and Zeng G 2008 Opt. Rev. 15 219
[28] Bennett C H and Brassard G 1984 Advances in Proceedings of the IEEE International Conference on Computers, Systems and Signal Processing, December 10-12, 1984 Bangalore, India, p. 175
[29] Ekert A K 1991 Phys. Rev. Lett. 67 661
[30] Bennett C H 1992 Phys. Rev. Lett. 68 3121
[31] Wiesner S 1983 ACM Sigact News 15 78
[32] Yang L, Wu L A and Liu S H 2002 Acta Phys. Sin. 51 961 (in Chinese)
[1] Security of the traditional quantum key distribution protocolswith finite-key lengths
Bao Feng(冯宝), Hai-Dong Huang(黄海东), Yu-Xiang Bian(卞宇翔), Wei Jia(贾玮), Xing-Yu Zhou(周星宇), and Qin Wang(王琴). Chin. Phys. B, 2023, 32(3): 030307.
[2] Performance of phase-matching quantum key distribution based on wavelength division multiplexing technology
Haiqiang Ma(马海强), Yanxin Han(韩雁鑫), Tianqi Dou(窦天琦), and Pengyun Li(李鹏云). Chin. Phys. B, 2023, 32(2): 020304.
[3] Temperature characterizations of silica asymmetric Mach-Zehnder interferometer chip for quantum key distribution
Dan Wu(吴丹), Xiao Li(李骁), Liang-Liang Wang(王亮亮), Jia-Shun Zhang(张家顺), Wei Chen(陈巍), Yue Wang(王玥), Hong-Jie Wang(王红杰), Jian-Guang Li(李建光), Xiao-Jie Yin(尹小杰), Yuan-Da Wu(吴远大), Jun-Ming An(安俊明), and Ze-Guo Song(宋泽国). Chin. Phys. B, 2023, 32(1): 010305.
[4] Improvement of a continuous-variable measurement-device-independent quantum key distribution system via quantum scissors
Lingzhi Kong(孔令志), Weiqi Liu(刘维琪), Fan Jing(荆凡), Zhe-Kun Zhang(张哲坤), Jin Qi(齐锦), and Chen He(贺晨). Chin. Phys. B, 2022, 31(9): 090304.
[5] Practical security analysis of continuous-variable quantum key distribution with an unbalanced heterodyne detector
Lingzhi Kong(孔令志), Weiqi Liu(刘维琪), Fan Jing(荆凡), and Chen He(贺晨). Chin. Phys. B, 2022, 31(7): 070303.
[6] Short-wave infrared continuous-variable quantum key distribution over satellite-to-submarine channels
Qingquan Peng(彭清泉), Qin Liao(廖骎), Hai Zhong(钟海), Junkai Hu(胡峻凯), and Ying Guo(郭迎). Chin. Phys. B, 2022, 31(6): 060306.
[7] Quantum key distribution transmitter chip based on hybrid-integration of silica and lithium niobates
Xiao Li(李骁), Liang-Liang Wang(王亮亮), Jia-shun Zhang(张家顺), Wei Chen(陈巍), Yue Wang(王玥), Dan Wu (吴丹), and Jun-Ming An (安俊明). Chin. Phys. B, 2022, 31(6): 064212.
[8] Phase-matching quantum key distribution with light source monitoring
Wen-Ting Li(李文婷), Le Wang(王乐), Wei Li(李威), and Sheng-Mei Zhao(赵生妹). Chin. Phys. B, 2022, 31(5): 050310.
[9] Parameter estimation of continuous variable quantum key distribution system via artificial neural networks
Hao Luo(罗浩), Yi-Jun Wang(王一军), Wei Ye(叶炜), Hai Zhong(钟海), Yi-Yu Mao(毛宜钰), and Ying Guo(郭迎). Chin. Phys. B, 2022, 31(2): 020306.
[10] Detecting the possibility of a type of photon number splitting attack in decoy-state quantum key distribution
Xiao-Ming Chen(陈小明), Lei Chen(陈雷), and Ya-Long Yan(阎亚龙). Chin. Phys. B, 2022, 31(12): 120304.
[11] Realization of simultaneous balanced multi-outputs for multi-protocols QKD decoding based onsilica-based planar lightwave circuit
Jin You(游金), Yue Wang(王玥), and Jun-Ming An(安俊明). Chin. Phys. B, 2021, 30(8): 080302.
[12] Practical decoy-state BB84 quantum key distribution with quantum memory
Xian-Ke Li(李咸柯), Xiao-Qian Song(宋小谦), Qi-Wei Guo(郭其伟), Xing-Yu Zhou(周星宇), and Qin Wang(王琴). Chin. Phys. B, 2021, 30(6): 060305.
[13] Continuous-variable quantum key distribution based on photon addition operation
Xiao-Ting Chen(陈小婷), Lu-Ping Zhang(张露萍), Shou-Kang Chang(常守康), Huan Zhang(张欢), and Li-Yun Hu(胡利云). Chin. Phys. B, 2021, 30(6): 060304.
[14] Three-party reference frame independent quantum key distribution protocol
Comfort Sekga and Mhlambululi Mafu. Chin. Phys. B, 2021, 30(12): 120301.
[15] Reference-frame-independent quantum key distribution of wavelength division multiplexing with multiple quantum channels
Zhongqi Sun(孙钟齐), Yanxin Han(韩雁鑫), Tianqi Dou(窦天琦), Jipeng Wang(王吉鹏), Zhenhua Li(李振华), Fen Zhou(周芬), Yuqing Huang(黄雨晴), and Haiqiang Ma(马海强). Chin. Phys. B, 2021, 30(11): 110303.
No Suggested Reading articles found!