Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(5): 054218    DOI: 10.1088/1674-1056/21/5/054218
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Spontaneous emission from an atom in a photonic crystal with two coherent bands

Huang Xian-Shan(黄仙山), Liu Hai-Lian(刘海莲), and Wang Dong(王东)
School of Mathematics and Physics, Anhui University of Technology, Maanshan 243002, China
Abstract  The dynamic and the radiative properties of an excited three-level atom embedded in an anisotropic photonic crystal with two coherent bands are investigated. The relative position of the atom in a Wigner--Seitz cell is described with a position-dependent parameter θ(r0), which is used as the coherent parameter for the two bands. The result shows that the dynamic properties of the atomic system are not only determined by atomic transition frequencies, but also affected by the gap width and the coherence of the two bands. In addition, the spontaneous emission spectrum of the atomic transition in free space is discussed. The center and the intensity of the spectrum can be obviously manipulated via the coherent parameter.
Keywords:  spontaneous emission      photonic crystals      coherent photonic reservoir  
Received:  14 August 2011      Revised:  27 April 2012      Accepted manuscript online: 
PACS:  42.70.Qs (Photonic bandgap materials)  
  42.50.Gy (Effects of atomic coherence on propagation, absorption, and Amplification of light; electromagnetically induced transparency and Absorption)  
Fund: Project supported by the Natural Science College Key Projects of Anhui Province, China (Grant No. KJ2010A335) and the National Natural Science Foundation of China (Grant No. 41075027).

Cite this article: 

Huang Xian-Shan(黄仙山), Liu Hai-Lian(刘海莲), and Wang Dong(王东) Spontaneous emission from an atom in a photonic crystal with two coherent bands 2012 Chin. Phys. B 21 054218

[1] Yablonovitch E 1987 Phys. Rev. Lett. 58 2059
[2] John S 1987 Phys. Rev. Lett. 58 2486
[3] Chen L and Nurmikko A V 2004 Appl. Phys. Lett. 85 3663
[4] Brinkley S, Lin Y D, Chakraborty A, Pfaff N, Cohen D, Speck J S, Nakamura S and DenBaars S P 2011 Appl. Phys. Lett. 98 011110
[5] Agrawal M, Sun Y, Forrest S R and Peumans P 2007 Appl. Phys. Lett. 90 241112
[6] Nishimura S, Abrams N, Lewis B A, Halaoui L I, Mallouk T E, Benkstein K D, van de Lagemaat J and Frank A J 2003 J. Am. Chem. Soc. 125 6306
[7] Bermel P, Luo C Y, Zeng L R, Kimerling L C and Joannopoulos J D 2007 Opt. Express 15 16986
[8] Zeng L, Yi Y, Hong C Y, Liu J, Feng N N, Duan X, Kimerling L C and Alamariu B 2006 Appl. Phys. Lett. 89 111
[9] Khodjasteh K and Lidar D A 2003 Phys. Rev. A 68 022322
[10] Noda S, Fujita M and Asano T 2007 Nature Photon. 1 449
[11] Liu J T, Xiao W B, Huang J H, Yu T B and Deng X H 2010 Acta Phys. Sin. 59 1665 (in Chinese)
[12] Solomon G S, Pelton M and Yamamoto Y 2001 Phys. Rev. Lett. 86 3903
[13] Han K, Wang Z Y, Shen X P, Wu Q H, Tong X, Tang G and Wu Y X 2011 Acta Phys. Sin. 60 044212 (in Chinese)
[14] John S and Wang J 1990 Phys. Rev. Lett. 64 2418
[15] Bay S, Lambropoulos P and Molmer K 1997 Phys. Rev. Lett. 79 2654
[16] Yang Y P, Fleischhauer M and Zhu S Y 2003 Phys. Rev. A 68 043805
[17] Cheng S C, Wu J N, Yang T J and Hsieh W F 2009 Phys. Rev. A 79 013801
[18] John S and Quang T 1994 Phys. Rev. A 50 1764
[19] Angelakis D G, Paspalakis E and Knight P L 2001 Phys. Rev. A 64 013801
[20] Zhou B, Du C G and Li S Q 2004 Chin. Phys. Lett. 21 856
[21] Li Z Y and Xia Y 2001 Phys. Rev. A 63 043817
[22] Angelakis D G, Paspalakis E and Knight P L 2000 Phys. Rev. A 61 055802
[23] Wang X H, Yuri S, Kivshar and Gu B Y 2004 Phys. Rev. Lett. 93 073901
[24] Liu N H, Xu J P and Zhu S Y 2006 Phys. Rev. B 74 075314
[25] Inés de Vega and Alonso D 2008 Phys. Rev. A 77 043836
[26] Scully M O and Zubairy M S 1997 Quantum Optics (Cambridge:Cambridge University Press) Chap. 4
[27] Paspalakis E, Angelakis D G and Knight P L 1999 Opt. Commun. 72 229
[28] Wang J, Yang D and Zhang H Z 2005 Chin. Phys. 14 0323
[29] Li Z Y, Lin L L and Zhang Z Q 2000 Phys. Rev. Lett. 84 4341
[30] Vats N, John S and Busch K 2002 Phys. Rev. A 65 043808
[31] Yang Y P and Zhu S Y 2000 Phys. Rev. A 62 013805
[32] Huang X S and Yang Y P 2007 J. Opt. Soc. Am. B 24 699
[1] Nonreciprocal wide-angle bidirectional absorber based on one-dimensional magnetized gyromagnetic photonic crystals
You-Ming Liu(刘又铭), Yuan-Kun Shi(史源坤), Ban-Fei Wan(万宝飞), Dan Zhang(张丹), and Hai-Feng Zhang(章海锋). Chin. Phys. B, 2023, 32(4): 044203.
[2] Impact of amplified spontaneous emission noise on the SRS threshold of high-power fiber amplifiers
Wei Liu(刘伟), Shuai Ren(任帅), Pengfei Ma(马鹏飞), and Pu Zhou(周朴). Chin. Phys. B, 2023, 32(3): 034202.
[3] Spontaneous emission of a moving atom in a waveguide of rectangular cross section
Jing Zeng(曾静), Jing Lu(卢竞), and Lan Zhou(周兰). Chin. Phys. B, 2023, 32(2): 020302.
[4] Dual-channel tunable near-infrared absorption enhancement with graphene induced by coupled modes of topological interface states
Zeng-Ping Su(苏增平), Tong-Tong Wei(魏彤彤), and Yue-Ke Wang(王跃科). Chin. Phys. B, 2022, 31(8): 087804.
[5] Loss prediction of three-level amplified spontaneous emission sources in radiation environment
Shen Tan(谭深), Yan Li(李彦), Hao-Shi Zhang(张浩石), Xiao-Wei Wang(王晓伟), and Jing Jin(金靖). Chin. Phys. B, 2022, 31(6): 064211.
[6] Pump pulse characteristics of quasi-continuous-wave diode-side-pumped Nd:YAG laser
Zexin Song(宋泽鑫), Qi Bian(卞奇), Yu Shen(申玉), Keling Gong(龚柯菱), Nan Zong(宗楠), Qingshuang Zong(宗庆霜), Yong Bo(薄勇), and Qinjun Peng(彭钦军). Chin. Phys. B, 2022, 31(5): 054208.
[7] Effect of spatially nonlocal versus local optical response of a gold nanorod on modification of the spontaneous emission
Sha-Sha Wen(文莎莎), Meng Tian(田锰), Hong Yang(杨红), Su-Jun Xie(谢素君), Xiao-Yun Wang(王小云), Yun Li(李芸), Jie Liu(刘杰), Jin-Zhang Peng(彭金璋), Ke Deng(邓科), He-Ping Zhao(赵鹤平), and Yong-Gang Huang(黄勇刚). Chin. Phys. B, 2021, 30(2): 027801.
[8] Thermal tunable one-dimensional photonic crystals containing phase change material
Yuanlin Jia(贾渊琳), Peiwen Ren(任佩雯), and Chunzhen Fan(范春珍)†. Chin. Phys. B, 2020, 29(10): 104210.
[9] Temperature and excitation dependence of stimulated emission and spontaneous emission in InGaN epilayer
Xuee An(安雪娥), Zhengjun Shang(商正君), Chuanhe Ma(马传贺), Xinhe Zheng(郑新和), Cuiling Zhang(张翠玲), Lin Sun(孙琳), Fangyu Yue(越方禹), Bo Li(李波), Ye Chen(陈晔). Chin. Phys. B, 2019, 28(5): 057802.
[10] Demonstration of multi-Watt all-fiber superfluorescent source operating near 980 nm
Yankun Ren(任彦锟), Jianqiu Cao(曹涧秋), Hanyuan Ying(应汉辕), Heng Chen(陈恒), Zhiyong Pan(潘志勇), Shaojun Du(杜少军), Jinbao Chen(陈金宝). Chin. Phys. B, 2018, 27(3): 030703.
[11] Comment on “Band gaps structure and semi-Dirac point of two-dimensional function photonic crystals” by Si-Qi Zhang et al.
Hai-Feng Zhang(章海锋). Chin. Phys. B, 2018, 27(1): 014205.
[12] Design of tunable surface mode waveguide based on photonic crystal composite structure using organic liquid
Lan-Lan Zhang(张兰兰), Wei Liu(刘伟), Ping Li(李萍), Xi Yang(杨曦), Xu Cao(曹旭). Chin. Phys. B, 2017, 26(6): 064209.
[13] Band gaps structure and semi-Dirac point of two-dimensional function photonic crystals
Si-Qi Zhang(张斯淇), Jing-Bin Lu(陆景彬), Yu Liang(梁禺), Ji Ma(马季), Hong Li(李宏), Xue Li(李雪), Xiao-Jing Liu(刘晓静), Xiang-Yao Wu(吴向尧), Xiang-Dong Meng(孟祥东). Chin. Phys. B, 2017, 26(2): 024208.
[14] Spontaneous emission from a microwave-driven four-level atom in an anisotropic photonic crystal
Jiang Li(姜丽), Ren-Gang Wan(万仁刚), Zhi-Hai Yao(姚治海). Chin. Phys. B, 2016, 25(10): 104204.
[15] Phase effect on dynamics of quantum discord modulated by interaction between qubits
Wang Guo-You (王国友), Guo You-Neng (郭有能), Zeng Hao-Sheng (曾浩生). Chin. Phys. B, 2015, 24(9): 090303.
No Suggested Reading articles found!